Kimberly A . Prather

Learn More
In ambient field studies conducted with aerosol time-of-flight mass spectrometry (ATOFMS), individual particle mass spectra commonly contain ion peaks at mass/charge (m/z) 86, 101, 102, and 118. Particles with mass spectra containing these peaks show a strong correlation with high relative humidity and low temperatures. In an effort to identify these peaks,(More)
Our ability to predict how global temperatures will change in the future is currently limited by the large uncertainties associated with aerosols. Soot aerosols represent a major research focus as they influence climate by absorbing incoming solar radiation resulting in a highly uncertain warming effect. The uncertainty stems from the fact that the actual(More)
Aerosol particles have received significant public and scientific attention in recent years due to studies linking them to global climatic changes and human health effects. In 1994, Prather et al. (Prather, K. A.; Nordmeyer, T.; Salt, K. Anal. Chem. 1994, 66, 1403-1407) developed aerosol time-of-flight mass spectrometry (ATOFMS), the first technique capable(More)
Every year, from December to April, anthropogenic haze spreads over most of the North Indian Ocean, and South and Southeast Asia. The Indian Ocean Experiment (INDOEX) documented this Indo-Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing. This study integrates the multiplatform observations(More)
Winter storms in California's Sierra Nevada increase seasonal snowpack and provide critical water resources and hydropower for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation, whereas few studies consider(More)
Unique high mass negative ions in the -200 to -400 mass/charge range with repetitive spacings of 12, 14, and 16 units, representative of oligomeric species, have been detected in single ambient submicrometer aerosol particles using real-time single-particle mass spectrometry during the Study of Organic Aerosols field campaign conducted in Riverside, CA(More)
The Indian Ocean Experiment (INDOEX) was an international, multiplatform field campaign to measure long-range transport of air pollution from South and Southeast Asia toward the Indian Ocean during the dry monsoon season in January to March 1999. Surprisingly high pollution levels were observed over the entire northern Indian Ocean toward the Intertropical(More)
This paper describes the development and characterization studies of a more efficient aerosol time-of-flight mass spectrometer (ATOFMS), showing results for the on-line detection and determination of the size and chemical composition of single fine (100-300 nm) and ultrafine (<100 nm) particles. An aerodynamic lens inlet was implemented, replacing the(More)
Simultaneous measurements of the effective density and chemical composition of individual ambient particles were made in Riverside, California by coupling a differential mobility analyzer (DMA) with an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS). In the summer, chemically diverse particle types (i.e., aged-OC, vanadium-OC-sulfate-nitrate,(More)
Recent ice core measurements show lead concentrations increasing since 1970, suggesting new nonautomobile-related sources of Pb are becoming important worldwide (1). Developing a full understanding of the major sources of Pb and other metals is critical to controlling these emissions. During the March, 2006 MILAGRO campaign, single particle measurements in(More)