Kimberly A. Bower

Learn More
The causes of sporadic Parkinson's disease (PD) are poorly understood. 6-Hydroxydopamine (6-OHDA), a PD mimetic, is widely used to model this neurodegenerative disorder in vitro and in vivo; however, the underlying mechanisms remain incompletely elucidated. We demonstrate here that 6-OHDA evoked endoplasmic reticulum (ER) stress, which was characterized by(More)
Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. The mechanisms underlying ethanol-induced neurodegeneration are complex. Ethanol exposure produces reactive oxygen species (ROS) which cause oxidative stress in the brain. We hypothesized that ethanol would activate autophagy to(More)
Ethanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is(More)
One of the most devastating effects of ethanol exposure during development is the loss of neurons in selected brain areas. The underlying cellular/molecular mechanisms remain unclear. The endoplasmic reticulum (ER) is involved in posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers(More)
Ethanol is a potent teratogen for the developing central nervous system (CNS), and fetal alcohol syndrome (FAS) is the most common nonhereditary cause of mental retardation. Ethanol disrupts neuronal differentiation and maturation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Using an in vitro neuronal(More)
Glycogen synthase kinase 3beta (GSK3beta) is a multifunctional serine/threonine kinase. We showed that the expression of GSK3beta was drastically down-regulated in human cutaneous squamous cell carcinomas and basal cell carcinomas. Due to its negative regulation of many oncogenic proteins, we hypothesized that GSK3beta may function as a tumor suppressor(More)
Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. A sublethal preconditioning has been proposed as a neuroprotective strategy against several central nervous system neurodegenerative diseases. We have recently demonstrated that autophagy is a protective response to alleviate ethanol(More)
It has been suggested that excessive reactive oxygen species (ROS) and oxidative stress play an important role in ethanol-induced damage to both the developing and mature central nervous system (CNS). The mechanisms underlying ethanol-induced neuronal ROS, however, remain unclear. In this study, we investigated the role of NADPH oxidase (NOX) in(More)
The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. The loss of neurons underlies many of the behavioral deficits observed in fetal alcohol spectrum disorders (FASD). The mechanisms of ethanol-induced neuronal loss, however, remain incompletely elucidated. We demonstrated that glycogen synthase kinase 3beta(More)
Alcohol consumption is a risk factor for breast cancer in humans. Experimental studies indicate that alcohol exposure promotes malignant progression of mammary tumors. However, the underlying cellular and molecular mechanisms remain unclear. Alcohol induces a pro-inflammatory response by modulating the expression of cytokines and chemokines. Monocyte(More)