Learn More
OBJECTIVE Proinflammatory mediators influence atherosclerosis by inducing adhesion molecules (eg, VCAM-1) on endothelial cells (ECs) via signaling intermediaries including p38 MAP kinase. Regions of arteries exposed to high shear stress are protected from inflammation and atherosclerosis, whereas low-shear regions are susceptible. Here we investigated(More)
Endothelial cells (EC) translate biomechanical forces into functional and phenotypic responses that play important roles in cardiac development. Specifically, EC in areas of high shear stress, i.e., in the cardiac outflow tract and atrioventricular canal, are characterized by high expression of Krüppel-like factor 2 (Klf2) and by transforming growth(More)
Transforming growth factor-beta (Tgfbeta) is essential for normal embryogenesis. The cardiac phenotypes obtained after knockout of each of the three mammalian isoforms suggest different roles during morphogenesis. We studied cardiovascular expression of Tgfbeta1-3 in parallel tissue sections of normal mouse embryos from 9.5 to 15.5 days post coitum (dpc) by(More)
Cardiovascular development is directed or modulated by genetic and epigenetic factors. The latter include blood flow-related shear stress and blood pressure-related circumferential strain. This review focuses on shear stress and its effects on endothelial cells lining the inner surfaces of the heart and blood vessels. Flow characteristics of the embryonic(More)
In this review, the role of wall shear stress in the chicken embryonic heart is analyzed to determine its effect on cardiac development through regulating gene expression. Therefore, background information is provided for fluid dynamics, normal chicken and human heart development, cardiac malformations, cardiac and vitelline blood flow, and a chicken model(More)
Primary cilia are mechanosensors for fluid shear stress, and are involved in a number of syndromes and congenital anomalies. We identified endothelial cilia in areas of low shear stress in the embryonic heart. The objective of the present study was to demonstrate the role of primary cilia in mechanosensing. Ciliated embryonic endothelial cells were cultured(More)
Cardiovascular pathologies are still the primary cause of death worldwide. The molecular mechanisms behind these pathologies have not been fully elucidated. Unravelling them will bring us closer to therapeutic strategies to prevent or treat cardiovascular disease. One of the major transcription factors that has been linked to both cardiovascular health and(More)
During cardiovascular development, fluid shear stress patterns change dramatically due to extensive remodeling. This biomechanical force has been shown to drive gene expression in endothelial cells and, consequently, is considered to play a role in cardiovascular development. The mechanism by which endothelial cells sense shear stress is still unidentified.(More)
Atherosclerosis develops in the arterial system at sites of low as well as low and oscillating shear stress. Previously, we demonstrated a shear-related distribution of ciliated endothelial cells in the embryonic cardiovascular system and postulated that the primary cilium is a component of the shear stress sensor, functioning as a signal amplifier. This(More)
Atherosclerosis-associated diseases are the main cause of mortality and morbidity in western societies. The progression of atherosclerosis is a dynamic process evolving from early to advanced lesions that may become rupture-prone vulnerable plaques. Acute coronary syndromes are the clinical manifestation of life-threatening thrombotic events associated with(More)