Kim Weng Chan

Learn More
Opening and closing of a CFTR Cl(-) channel is controlled by PKA-mediated phosphorylation of its cytoplasmic regulatory (R) domain and by ATP binding, and likely hydrolysis, at its two nucleotide binding domains. Functional interactions between the R domain and the two nucleotide binding domains were probed by characterizing the gating of severed CFTR(More)
The sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, assembles with a potassium channel subunit (Kir6) to form the ATP-sensitive potassium channel (K(ATP)) complex. Although SUR is an important regulator of Kir6, the specific SUR domain that associates with Kir6 is still unknown. All functional ABC proteins contain two transmembrane(More)
Lymphocytes activated by antigen receptor cross-linking or phorbol esters adhere avidly to surfaces bearing intercellular adhesion molecule 1 (ICAM-1) through the adhesion receptor lymphocyte function-associated antigen 1 (LFA-1). It is not known whether avid adhesion by stimulated lymphocytes is due to higher affinity binding of ICAM-1 or due solely to(More)
Muscarinic potassium channels (KACh) are composed of two subunits, GIRK1 and GIRK4 (or CIR), and are directly gated by G proteins. We have identified a novel gating mechanism of KACh, independent of G-protein activation. This mechanism involved functional modification of KACh which required hydrolysis of physiological levels of intracellular ATP and was(More)
CFTR (cystic fibrosis transmembrane conductance regulator), the protein whose dysfunction causes cystic fibrosis, is a chloride ion channel whose gating is controlled by interactions of MgATP with CFTR's two cytoplasmic nucleotide binding domains, but only after several serines in CFTR's regulatory (R) domain have been phosphorylated by cAMP-dependent(More)
SLC26 proteins function as anion exchangers, channels, and sensors. Previous cellular studies have shown that Slc26a3 and Slc26a6 interact with the R-region of the cystic fibrosis transmembrane conductance regulator (CFTR), (R)CFTR, via the Slc26-STAS (sulfate transporter anti-sigma) domain, resulting in mutual transport activation. We recently showed that(More)
In heart, G-protein-activated channels are complexes of two homologous proteins, GIRK1 and GIRK4. Expression of either protein alone results in barely active or non-active channels, making it difficult to assess the individual contribution of each subunit to the channel complex. The residue Phe137, located within the H5 region of GIRK1, is critical to the(More)
GTP-binding (G) proteins have been shown to mediate activation of inwardly rectifying potassium (K+) channels in cardiac, neuronal and neuroendocrine cells. Here, we report functional expression of a recombinant inwardly rectifying channel which we call KGP (or hpKir3.4), to signify that it is K+ selective, G-protein-gated and isolated from human pancreas.(More)
ATP-sensitive potassium (K(ATP)) channels comprise four pore-forming Kir6 and four regulatory sulphonylurea receptor (SUR) subunits. SUR, an ATP-binding cassette protein, associates with Kir6 through its N-terminal transmembrane domain (TMD0). TMD0 connects to the core domain of SUR through a cytosolic linker (L0). The intrinsic gating of Kir6.2 is greatly(More)
The molecular mechanism of ion channel gating remains unclear. Using approaches such as proline scanning mutagenesis and homology modeling, we localize the gate of the K(+) channels controlled by the (beta)gamma subunits of G proteins at the pore-lining bundle crossing of the second transmembrane (TM2) helices. We show that the flexibility afforded by a(More)