Learn More
Bacterial populations produce persisters, cells that neither grow nor die in the presence of bactericidal agents, and thus exhibit multidrug tolerance (MDT). The mechanisms of MDT and the nature of persisters have remained elusive. Our previous research has shown that persisters are largely responsible for the recalcitrance of biofilm infections. A general(More)
Bacterial populations produce persister cells that neither grow nor die in the presence of microbicidal antibiotics. Persisters are largely responsible for high levels of biofilm tolerance to antimicrobials, but virtually nothing was known about their biology. Tolerance of Escherichia coli to ampicillin and ofloxacin was tested at different growth stages to(More)
Several well-recognized puzzles in microbiology have remained unsolved for decades. These include latent bacterial infections, unculturable microorganisms, persister cells and biofilm multidrug tolerance. Accumulating evidence suggests that these seemingly disparate phenomena result from the ability of bacteria to enter into a dormant (non-dividing) state.(More)
Bacteria induce stress responses that protect the cell from lethal factors such as DNA-damaging agents. Bacterial populations also form persisters, dormant cells that are highly tolerant to antibiotics and play an important role in recalcitrance of biofilm infections. Stress response and dormancy appear to represent alternative strategies of cell survival.(More)
  • K Lewis
  • 2008
Bacterial populations produce a small number of dormant persister cells that exhibit multidrug tolerance. All resistance mechanisms do essentially the same thing: prevent the antibiotic from hitting a target. By contrast, tolerance apparently works by shutting down the targets. Bactericidal antibiotics kill bacteria by corrupting their targets, rather than(More)
Plant antimicrobials are not used as systemic antibiotics at present. The main reason for this is their low level of activity, especially against gram-negative bacteria. The reported MIC is often in the range of 100 to 1,000 micro g/ml, orders of magnitude higher than those of common broad-spectrum antibiotics from bacteria or fungi. Major plant pathogens(More)
Bactericidal antibiotics kill by modulating their respective targets. This traditional view has been challenged by studies that propose an alternative, unified mechanism of killing, whereby toxic reactive oxygen species (ROS) are produced in the presence of antibiotics. We found no correlation between an individual cell's probability of survival in the(More)
BACKGROUND Bacterial populations contain persisters, phenotypic variants that constitute approximately 1% of cells in stationary phase and biofilm cultures. Multidrug tolerance of persisters is largely responsible for the inability of antibiotics to completely eradicate infections. Recent progress in understanding persisters is encouraging, but the main(More)
Tuberculosis continues to be a major public health problem in many parts of the world. Significant obstacles in controlling the epidemic are the length of treatment and the large reservoir of latently infected people. Bacteria form dormant, drug-tolerant persister cells, which may be responsible for the difficulty in treating both acute and latent(More)
Bacteria can survive antibiotic treatment without acquiring heritable antibiotic resistance. We investigated persistence to the fluoroquinolone ciprofloxacin in Escherichia coli. Our data show that a majority of persisters to ciprofloxacin were formed upon exposure to the antibiotic, in a manner dependent on the SOS gene network. These findings reveal an(More)