Kim-Han Thung

Learn More
Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the(More)
Accurate classification of Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI), plays a critical role in possibly preventing progression of memory impairment and improving quality of life for AD patients. Among many research tasks, it is of a particular interest to identify noninvasive imaging biomarkers for AD diagnosis. In(More)
In this work, we are interested in predicting the diagnostic statuses of potentially neurodegenerated patients using feature values derived from multi-modality neuroimaging data and biological data, which might be incomplete. Collecting the feature values into a matrix, with each row containing a feature vector of a sample, we propose a framework to predict(More)
Autism spectrum disorder (ASD) is a wide range of disabilities that cause life-long cognitive impairment and social, communication, and behavioral challenges. Early diagnosis and medical intervention are important for improving the life quality of autistic patients. However, in the current practice, diagnosis often has to be delayed until the behavioral(More)
In this paper, the similarity of moment vectors between the test and the reference image blocks together with the result from the block classification are used in the formulation of an image quality metric (IQM). First, the reference and the test images are divided into non-overlapping 8 Â 8 blocks and transformed into moment domain using Discrete(More)
Alzheimer's disease (AD) is an irreversible neurodegenerative disease and affects a large population in the world. Cognitive scores at multiple time points can be reliably used to evaluate the progression of the disease clinically. In recent studies, machine learning techniques have shown promising results on the prediction of AD clinical scores. However,(More)