Kim E. Wells

Learn More
The efficiency of plasmid gene transfer to skeletal muscle can be significantly improved by the application of an electrical field to the muscle following injection of plasmid DNA. However, this electrotransfer is associated with significant muscle damage which may result in substantial loss of transfected muscle fibres. Reduction of the voltage used in the(More)
The 27-kDa heat shock protein (HSP27) has a potent ability to increase cell survival in response to a wide range of cellular challenges. In order to investigate the mode of action of HSP27 in vivo, we have developed transgenic lines, which express human HSP27 at high levels throughout the brain, spinal cord, and other tissues. In view of the particular(More)
The use of antisense oligonucleotides (AOs) to induce exon skipping leading to generation of an in-frame dystrophin protein product could be of benefit in around 70% of Duchenne muscular dystrophy patients. We describe the use of hyaluronidase enhanced electrotransfer to deliver uncomplexed 2'-O-methyl modified phosphorothioate AO to adult dystrophic mouse(More)
Introduction of dystrophin by gene transfer into the dystrophic muscles of Duchenne muscular dystrophy (DMD) patients has the possibility of triggering an immune response as many patients will not have been exposed to some (or all) of the epitopes of dystrophin. This could in turn lead to cytotoxic destruction of transfected muscle fibres. We assessed such(More)
Splice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate(More)
Mutations in fukutin-related protein (FKRP) underlie a group of muscular dystrophies associated with the hypoglycosylation of α-dystroglycan (α-DG), a proportion of which show central nervous system involvement. Our original FKRP knock-down mouse (FKRP(KD)) replicated many of the characteristics seen in patients at the severe end of the dystroglycanopathy(More)
There is a pressing need to develop new therapeutic approaches to Duchenne muscular dystrophy, an X-linked fatal disease primarily affecting skeletal and cardiac muscle. Gene therapy is an approach that has attracted much interest since the description of the Duchenne muscular dystrophy gene and its mutations in 1987. Since 1990 numerous reporter and(More)
Transfer of genes by injection of plasmid DNA into skeletal muscle has a wide variety of applications ranging from treatment of neuromuscular disorders to genetic vaccination. We examined each component involved in the intramuscular injection of plasmid DNA in terms of the induction of inflammatory responses. The insertion of a needle and the injection of a(More)
The efficiency of plasmid gene transfer in skeletal muscle is significantly enhanced by pretreatment with hyaluronidase and the application of an electrical field to the muscle following the injection of plasmid DNA, a process referred to as electrotransfer. However, the presence of increased levels of connective tissue in muscular dystrophies, such as(More)
A lack of effective treatments for Duchenne muscular dystrophy, a fatal X-linked myopathy, has focused attention on the possibility of gene therapy. The aim of the gene therapy approach is the restoration of the dystrophin associated complex of proteins, one member of which is neuronal nitric oxide synthase, an important enzyme in signal transduction.(More)