Learn More
β-glucosidases (BGs) from Aspergillus fumigatus, Aspergillus niger, Aspergillus oryzae, Magnaporthe grisea, Neurospora crassa, and Penicillium brasilianum were purified to homogeneity, and investigated for their (simultaneous) hydrolytic and transglycosylation activity in samples with high concentrations of either cellobiose or glucose. The rate of the(More)
β-Glucosidases (BGs) from Aspergillus fumigates, Aspergillus niger, Aspergillus oryzae, Chaetomium globosum, Emericella nidulans, Magnaporthe grisea, Neurospora crassa, and Penicillium brasilianum were purified to homogeneity, and analyzed by isothermal titration calorimetry with respect to their hydrolytic activity and its sensitivity to glucose (product)(More)
Three Pseudomonas lipases, representing three subfamilies, were analysed for pH optima, destabilization by EGTA and surfactants, phospholipase and cholesterolesterase side activities. All the Pseudomonas lipases tested showed alkaline pH optima. The Pseudomonas cepacia and the P. pseudoalcaligenes lipases were totally inhibited by EGTA at pH 9, and the(More)
Product inhibition of cellulolytic enzymes has been deemed a critical factor in the industrial saccharification of cellulosic biomass. Several investigations have addressed this problem using crude enzyme preparations or commercial (mixed) cellulase products, but quantitative information on individual cellulases hydrolyzing insoluble cellulose remains(More)
The specific binding to bovine serum albumin (BSA) of anionic and non-ionic surfactants with C12 acyl chains has been studied by high sensitivity isothermal titration calorimetry. This method proved particularly effective in resolving the binding of anionic surfactants into separate classes of sites with different affinity. For sodium dodecylsulfate (SDS)(More)
BACKGROUND The well-studied cellulase mixture secreted by Trichoderma reesei (anamorph to Hypocrea jecorina) contains two cellobiohydolases (CBHs), cellobiohydrolase I (TrCel7A) and cellobiohydrolase II (TrCeI6A), that are core enzymes for the solubilisation of cellulose. This has attracted significant research interest because of the role of the CBHs in(More)
Cellobiohydrolases are exo-active glycosyl hydrolases that processively convert cellulose to soluble sugars, typically cellobiose. They effectively break down crystalline cellulose and make up a major component in industrial enzyme mixtures used for deconstruction of lignocellulosic biomass. Identification of the rate-limiting step for cellobiohydrolases(More)
The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime for the exo-acting cellulase Cel7A using amperometric(More)
The enzyme cellobiose dehydrogenase (CDH) is of considerable interest, not only for its biotechnological applications, but also its potential biological role in lignocellulosic biomass breakdown. The enzyme catalyzes the oxidation of cellobiose and other cellodextrins, utilizing a variety of one- and two-electron acceptors, although the electron acceptor(More)
Cellulases hydrolyze cellulose to soluble sugars and this process is utilized in sustainable industries based on lignocellulosic feedstock. Better analytical tools will be necessary to understand basic cellulase mechanisms, and hence deliver rational improvements of the industrial process. In this work we describe a new electrochemical approach to the(More)