Learn More
BACKGROUND The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL(More)
Oceanic bacteria perform many environmental functions, including biogeochemical cycling of many elements, metabolizing of greenhouse gases, functioning in oceanic food webs (microbial loop), and producing valuable natural products and viruses. We demonstrate that the widespread capability of marine bacteria to participate in horizontal gene transfer (HGT)(More)
Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts) and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial(More)
Over the last decade, significant advances have been made in characterization of the coral microbiota. Shifts in its composition often correlate with the appearance of signs of diseases and/or bleaching, thus suggesting a link between microbes, coral health and stability of reef ecosystems. The understanding of interactions in coral-associated microbiota is(More)
Acute catastrophic events can cause significant damage to marine environments in a short time period and may have devastating long-term impacts. In April 2010 the BP-operated Deepwater Horizon (DWH) offshore oil rig exploded, releasing an estimated 760 million liters of crude oil into the Gulf of Mexico. This study examines the potential effects of oil(More)
Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to(More)
Bacteria living within the surface mucus layer of corals compete for nutrients and space. A number of stresses affect the outcome of this competition. The interactions between native microorganisms and opportunistic pathogens largely determine the coral holobiont's overall health and fitness. In this study, we tested the hypothesis that commensal bacteria(More)
Incidents of coral disease are on the rise. However, in the absence of a surrogate animal host, understanding of the interactions between coral pathogens and their hosts remains relatively limited, compared to other pathosystems of similar global importance. A tropical sea anemone, Aiptasia pallida, has been investigated as a surrogate model to study(More)
Members of the gammaproteobacterial genus Halomonas are common in marine environments. Halomonas and other members of the Oceanospirillales have recently been identified as prominent members of the surface microbiota of reef-building corals. Halomonas meridiana strain R1t3 was isolated from the surface mucus layer of the scleractinian coral Acropora palmata(More)
Increasing levels of pCO2 within the oceans will select for resistant organisms such as anemones, which may thrive under ocean acidification conditions. However, increasing pCO2 may alter the bacterial community of marine organisms, significantly affecting the health status of the host. A pH gradient associated with a natural volcanic vent system within(More)