Learn More
Parkinson's disease (PD) is a neurodegenerative disorder with prominent neuronal cell death in the substantia nigra (SN) and other parts of the brain. Previous studies in models of traumatic and neurodegenerative CNS disease showed that pharmacological inhibition of Rho-associated kinase (ROCK), a molecule involved in inhibitory signaling in the CNS, by(More)
Disease progression in amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motoneurons and their axons which results in a progressive muscle weakness and ultimately death from respiratory failure. The only approved drug, riluzole, lacks clinical efficacy so that more potent treatment options are needed. We have identified rho kinase(More)
Chronic degeneration of nigrostriatal projections, followed by nigral dopaminergic cell death, is a key feature of Parkinson disease (PD). This study examines the neuroprotective potential of the rho kinase inhibitor fasudil in the 6-hydroxydopamine (6-OHDA) mouse model of PD in vivo. C57Bl/6 mice were lesioned by striatal stereotactic injections with 4 μg(More)
The dopaminergic (DAergic) nigrostriatal tract has an intrinsic regenerative capacity which can be impaired in Parkinson's disease (PD). Alpha-synuclein (aSyn) is a major pathogenic component in PD but its impact on DAergic axonal regeneration is largely unknown. In this study, we expressed pathogenic variants of human aSyn by means of recombinant(More)
Causative treatment strategies for Parkinson's disease (PD) will have to address multiple underlying pathomechanisms to attenuate neurodegeneration. Additionally, the intrinsic regenerative capacity of the central nervous system is also an important factor contributing to restoration. Extracellular cues can limit sprouting and regrowth of adult neurons, but(More)
  • 1