Kim A. Lennox

Learn More
The physiological barriers of the brain impair drug delivery for treatment of many neurological disorders. One delivery approach that has not been investigated for their ability to penetrate the brain is RNA-based aptamers. These molecules can impart delivery to peripheral tissues and circulating immune cells, where they act as ligand mimics or can be(More)
Thank you for submitting your manuscript for consideration by the EMBO Journal. It has now been seen by three referees whose comments are enclosed. As you will see, all three reviewers express significant interest in your work, and are broadly in favour of publication. Referees 1 and 3 raise only relatively minor points, but Referee 2 has more significant(More)
Genome-encoded microRNAs (miRNAs) provide a post-transcriptional regulatory layer that is important for pancreas development. However, how specific miRNAs are intertwined into the transcriptional network, which controls endocrine differentiation, is not well understood. Here, we show that microRNA-7 (miR-7) is specifically expressed in endocrine precursors(More)
MicroRNAs (miRNAs) were shown to be important for pancreas development, yet their roles in differentiated β-cells remain unclear. Here, we show that miRNA inactivation in β-cells of adult mice results in a striking diabetic phenotype. While islet architecture is intact and differentiation markers are maintained, Dicer1-deficient β-cells show a dramatic(More)
Cataloguing endogenous miRNA targets by inhibiting miRNA function is fundamental to understanding the biological importance of each miRNA in gene regulatory pathways. Methods to down-regulate miRNA activity may help treat diseases where over-expression of miRNAs relates to the underlying pathophysiology. This study objectively evaluates the in vitro potency(More)
Production of functional proteins requires multiple steps, including gene transcription and posttranslational processing. MicroRNAs (miRNAs) can regulate individual stages of these processes. Despite the importance of the cystic fibrosis transmembrane conductance regulator (CFTR) channel for epithelial anion transport, how its expression is regulated(More)
Antisense techniques have been employed for over 30 years to suppress expression of target RNAs. Recently, microRNAs (miRNAs) have emerged as a new class of small, non-coding, regulatory RNA molecules that widely impact gene regulation, differentiation and disease states in both plants and animals. Antisense techniques that employ synthetic oligonucleotides(More)
Thousands of long non-coding RNAs (lncRNAs) have been identified in mammalian cells. Some have important functions and their dysregulation can contribute to a variety of disease states. However, most lncRNAs have not been functionally characterized. Complicating their study, lncRNAs have widely varying subcellular distributions: some reside predominantly in(More)
Anti-microRNA oligonucleotides (AMOs) are steric blocking antisense reagents that inhibit microRNA (miRNA) function by hybridizing and repressing the activity of a mature miRNA. First generation AMOs employed 2'-O-Methyl RNA nucleotides (2'OMe) with phosphorothioate (PS) internucleotide linkages positioned at both ends to block exonuclease attack. Second(More)
MicroRNAs (miRNAs) are increasingly recognized as important posttranscriptional regulators of gene expression, and changes in their actions can contribute to disease states. Little is understood regarding miRNA functions in the airway epithelium under normal or diseased conditions. We profiled miRNA expression in well-differentiated primary cultures of(More)