Learn More
  • K Iwabuchi
  • 1999
A continuous cell line has been established from larval fat body tissues of the cerambycid beetle Xylotrechus pyrrhoderus Bates. These cells were cultured in MGM-450 medium. The cell line, designated as XP-1, showed a heterogeneous population consisting of spherical and spindle-shaped cells with some capacity to adhere and a doubling time of 5 d. The(More)
Insect dorsal vessel (DV) tissue seems well suited for microactuators due to its environmental robustness and low maintenance. We describe an insect muscle-powered autonomous microrobot (iPAM) and its acceleration with a neuroactive chemical, crustacean cardioactive peptide (CCAP). The iPAM, consisting of a DV tissue and a frame, was designed on the basis(More)
To clarify the regulatory mechanism of the rapid changes in the hemocyte density in the silkworm, Bombyx mori, during ecdysis, we evaluated the relationship between the hemocyte density and the incidence of apoptosis during this stage. We also evaluated the role of the sugar chains on the adhesion of hemocytes by analyzing the effects on the hemocyte(More)
Tissue culture is performed to maintain isolated portions of multicellular organisms in an artificial milieu that is outside the individual organism and for considerable periods of time; cells derived from cultured explants are, in general, different from cells of the corresponding tissue in a living organism. The changes in cultured tissues that precede(More)
The queenless ant Pristomyrmex punctatus (Hymenoptera: Myrmicinae) has a unique society that differs from those of other typical ants. This species does not have a queen, and the workers lay eggs and produce their clones parthenogenetically. However, a colony of these ants does not always comprise members derived from a single clonal line. In this study, we(More)
Cells must coordinate adjustments in genome expression to accommodate changes in their environment. We hypothesized that the amount of transcriptome change is proportional to the amount of environmental change. To capture the effects of environmental changes on the transcriptome, we compared transcriptome diversities (defined as the Shannon entropy of(More)
Electroantennograms were recorded from the grape borerXylotrechus pyrrhoderus in response to serial dilutions of male sex pheromone components, (2S,3S)-octanediol and (2S)-hydroxy-3-octanone, and to 100 μg of their optical isomers and host plant substances. Female antennae always responded more strongly than male antennae. Antennae of both sexes were highly(More)
Here we propose an environmentally robust hybrid (biotic-abiotic) robotic system that uses insect heart cells. Our group has already presented a hybrid actuator using rat heart muscle cells, but it is difficult to keep rat heart muscle cells contracting spontaneously without maintaining the culture conditions carefully. Insect cells, by contrast, are robust(More)
We present a bioactuator powered by insect dorsal vessel tissue which can work for a long time at room temperature without maintenance. Previously reported bioactuators which exploit contracting ability of mammalian heart muscle cell have required precise environmental control to keep the cell alive and contracting. To overcome this problem, we propose a(More)
Living muscle tissues and cells have been attracting attention as potential actuator candidates. In particular, insect dorsal vessel tissue (DVT) seems to be well suited for a bio-actuator since it is capable of contracting autonomously and the tissue itself and its cells are more environmentally robust under culturing conditions compared with mammalian(More)