Kiki Tuin

Learn More
The population structure of Mycobacterium tuberculosis is typically clonal therefore genotypic lineages can be unequivocally identified by characteristic markers such as mutations or genomic deletions. In addition, drug resistance is mainly mediated by mutations. These issues make multiplexed detection of selected mutations potentially a very powerful tool(More)
Multiplex ligation-dependent probe amplification (MLPA) is a powerful tool to identify genomic polymorphisms. We have previously developed a single nucleotide polymorphism (SNP) and large sequence polymorphisms (LSP)-based MLPA assay using a read out on a liquid bead array to screen for 47 genetic markers in the Mycobacterium tuberculosis genome. In our(More)
Salmonella enterica serovar Typhi, the causative agent of typhoid fever, is highly clonal and genetically conserved, making isolate subtyping difficult. We describe a standardized multiplex ligation-dependent probe amplification (MLPA) genotyping scheme targeting 11 key phylogenetic markers of the S. Typhi genome. The MLPA method demonstrated 90%(More)
  • 1