Kihang Choi

Learn More
Transglutaminase 2 (TG2) is a multifunctional mammalian protein with transamidase and signaling properties. Using selective TG2 inhibitors and tagged nucleophilic amine substrates, we show that the majority of extracellular TG2 is inactive under normal physiological conditions in cell culture and in vivo. However, abundant TG2 activity was detected around(More)
In order to develop a computational method to rapidly evaluate transdermal peptides, we report approaches for predicting the transdermal activity of peptides on the basis of peptide sequence information using Artificial Neural Network (ANN), Partial Least Squares (PLS) and Support Vector Machine (SVM). We identified 269 transdermal peptides by the phage(More)
This study describes the application of a density-based algorithm to clustering small peptide conformations after a molecular dynamics simulation. We propose a clustering method for small peptide conformations that enables adjacent clusters to be separated more clearly on the basis of neighbor density. Neighbor density means the number of neighboring(More)
BACKGROUND Oral delivery is a highly desirable property for candidate drugs under development. Computational modeling could provide a quick and inexpensive way to assess the intestinal permeability of a molecule. Although there have been several studies aimed at predicting the intestinal absorption of chemical compounds, there have been no attempts to(More)
Transglutaminase2 (TG2) is a multi-functional protein involved in various cellular processes, including apoptosis, differentiation, wound healing, and angiogenesis. The malfunction of TG2 causes many human disease including inflammatory disease, celiac disease, neurodegenerative diseases, tissue fibrosis, and cancers. Protein cross-linking activity, which(More)
We described here the synthesis and biological evaluation of mGluR5 antagonists containing a quinoline ring structure. Using intracellular calcium mobilization assay (FDSS assay), we identified compound 5n, showing high inhibitory activity against mGluR5. In addition, it was found that compound 5n has excellent stability profile. Finally, this compound(More)
Using phage display technique, we identified tissue-targeting peptide sets that recognize specific tissues (bone-marrow dendritic cell, kidney, liver, lung, spleen and visceral adipose tissue). In order to rapidly evaluate tissue-specific targeting peptides, we performed machine learning studies for predicting the tissue-specific targeting activity of(More)
We report a new approach to studying organ targeting of peptides on the basis of peptide sequence information. The positive control data sets consist of organ-targeting peptide sequences identified by the peroral phage-display technique for four organs, and the negative control data are prepared from random sequences. The capacity of our models to make(More)
  • 1