Kieran A. Ryan

Learn More
Surface proteins are important factors in the interaction of probiotic and pathogenic bacteria with their environment or host. We performed a comparative bioinformatic analysis of four publicly available Lactobacillus genomes and the genome of Lactobacillus salivarius subsp. salivarius strain UCC118 to identify secreted proteins and those linked to the cell(More)
Toll-like receptor 4 (TLR4) has been identified as a transmembrane protein involved in the host innate immune response to gram-negative bacterial lipopolysaccharide (LPS). Upon activation by LPS recognition, the TIR domain of TLR4 signals through MyD88 to activate the nuclear factor kappa B (NF-kappa B) pathway, a critical regulator of many proinflammatory(More)
The Helicobacter pylori protein HP0958 is essential for flagellum biogenesis. It has been shown that HP0958 stabilizes the sigma(54) factor RpoN. The aim of this study was to further investigate the role of HP0958 in flagellum production in H. pylori. Global transcript analysis identified a number of flagellar genes that were differentially expressed in an(More)
Human infection by the gastric pathogen Helicobacter pylori is characterized by a robust immune response which rarely prevents persistent H. pylori colonization. Emerging evidence suggests that lactobacilli may reduce H. pylori infection rates and associated inflammation. In this study, we measured the ability of two model strains of Lactobacillus(More)
The genome of Lactobacillus salivarius UCC118 includes a 242-kb megaplasmid, pMP118. We now show that 33 strains of L. salivarius isolated from humans and animals all harbor a megaplasmid, which hybridized with the repA and repE replication origin probes of pMP118. Linear megaplasmids that did not hybridize with the pMP118 repA probe were also found in some(More)
OBJECTIVES To investigate the anti-Helicobacter pylori activity of 28 strains of Lactobacillus salivarius and 12 other lactobacilli, isolated from different sites and from different geographical regions. METHODS An in vitro agar plate diffusion assay was employed to assess the Lactobacillus anti-H. pylori activity. RESULTS Nine out of 28 L. salivarius(More)
Helicobacter pylori is a human gastric pathogen which is dependent on motility for infection. The H. pylori genome encodes a near-complete complement of flagellar proteins compared to model enteric bacteria. One of the few flagellar genes not annotated in H. pylori is that encoding FliK, a hook length control protein whose absence leads to a polyhook(More)
Infection with Helicobacter pylori, a Gram-negative, microaerophilic, flagellated bacteria that adheres to human gastric mucosa, is strongly associated with gastric ulcers and adenocarcinoma. The mechanisms through which gastric epithelial cells recognize this organism are unclear. In this study we evaluated the interactions between the Toll-like receptors(More)
BACKGROUND & AIMS Helicobacter pylori infection causes inflammation, accumulation of reactive oxygen species, and oxidative DNA damage in the gastric mucosa. Apurinic/apyrimidinic endonuclease-1 (APE-1)/redox factor-1 (Ref-1) repairs damaged DNA and reductively activates transcription factors, including activator protein-1. Considering that H. pylori(More)
The bacterial flagellum is a highly complex prokaryotic organelle. It is the motor that drives bacterial motility, and despite the large amount of energy required to make and operate flagella, motile organisms have a strong adaptive advantage. Flagellar biogenesis is both complex and highly coordinated and it typically involves at least three two-component(More)