Learn More
Throughout the latter half of this century, the development and spread of resistance to most front-line antimalarial compounds used in the prevention and treatment of the most severe form of human malaria has given cause for grave clinical concern. Polymorphisms in pfmdr1, the gene encoding the P-glycoprotein homologue 1 (Pgh1) protein of Plasmodium(More)
  • K Kirk
  • Physiological reviews
  • 2001
The malaria parasite is a unicellular eukaryotic organism which, during the course of its complex life cycle, invades the red blood cells of its vertebrate host. As it grows and multiplies within its host blood cell, the parasite modifies the membrane permeability and cytosolic composition of the host cell. The intracellular parasite is enclosed within a(More)
Following infection by the malaria parasite, Plasmodium falciparum, human erythrocytes show increased permeability to a variety of low molecular weight solutes. In this study a number of anion transport blockers were identified as potent inhibitors of the transport of a wide range of solutes into human erythrocytes infected in vitro with P. falciparum.(More)
Microbial pathogens use environmental cues to trigger the developmental events needed to infect mammalian hosts or transmit to disease vectors. The parasites causing African sleeping sickness respond to citrate or cis-aconitate (CCA) to initiate life-cycle development when transmitted to their tsetse fly vector. This requires hypersensitization of the(More)
The growth of the human malaria parasite, Plasmodium falciparum, within its host erythrocyte is reliant on the uptake of a number of essential nutrients from the extracellular medium. One of these is pantothenic acid, a water-soluble vitamin that is a precursor of coenzyme A. In this study we show that normal uninfected erythrocytes are impermeable to(More)
The mechanism by which the intra-erythrocytic form of the human malaria parasite, Plasmodium falciparum, extrudes H(+) ions and thereby regulates its cytosolic pH (pH(i)), was investigated using saponin-permeabilized parasitized erythrocytes. The parasite was able both to maintain its resting pH(i) and to recover from an imposed intracellular acidification(More)
  • K. Kirk
  • The Journal of Membrane Biology
  • 1997
Most cells have in their cytosols substantial (i.e., ùmillimolar) concentrations of low molecular weight organic solutes which, together, make a significant contribution to the total intracellular osmolality and which are known collectively as ‘organic osmolytes’. The solutes fulfilling this role fall, in most cases, into one of three different classes:(More)
In human erythrocytes infected with the mature form of the malaria parasite Plasmodium falciparum, the cytosolic concentration of Na(+) is increased and that of K(+) is decreased. In this study, the membrane transport changes underlying this perturbation were investigated using a combination of (86)Rb(+), (43)K(+), and (22)Na(+) flux measurements and a(More)
Recent studies have highlighted the importance of a parasite protein referred to as the chloroquine resistance transporter (PfCRT) in the molecular basis of Plasmodium falciparum resistance to the quinoline antimalarials. PfCRT, an integral membrane protein with 10 predicted transmembrane domains, is a member of the drug/metabolite transporter superfamily(More)
We have used the whole-cell patch clamp recording technique to characterize a swelling-activated chloride current in guinea pig atrial and ventricular myocytes and to compare the electrophysiological and pharmacological properties of this current with the isoprenaline-activated chloride current in the same cell types. Osmotic swelling of guinea pig cardiac(More)