Learn More
The problem of modeling and predicting spa-tiotemporal traffic phenomena over an urban road network is important to many traffic applications such as detecting and forecasting congestion hotspots. This paper presents a decentralized data fusion and active sensing (D 2 FAS) algorithm for mobile sensors to actively explore the road network to gather and(More)
The exploration problem is a central issue in mobile robotics. A complete terrain coverage is not practical if the environment is large with only a few small hotspots. This paper presents an adaptive multi-robot exploration strategy that is novel in performing both wide-area coverage and hotspot sampling using non-myopic path planning. As a result, the(More)
This paper presents a task allocation scheme via self-organizing swarm coalitions for distributed mobile sensor network coverage. Our approach uses the concepts of ant behavior to self-regulate the regional distributions of sensors in proportion to that of the moving targets to be tracked in a non-stationary environment. As a result , the adverse effects of(More)
A central problem in environmental sensing and monitoring is to classify/label the hotspots in a large-scale environmental field. This paper presents a novel decentralized active robotic exploration (DARE) strategy for probabilis-tic classification/labeling of hotspots in a Gaussian process (GP)-based field. In contrast to existing state-of-the-art(More)
A key challenge in non-cooperative multi-agent systems is that of developing efficient planning algorithms for intelligent agents to interact and perform effectively among boundedly rational, self-interested agents (e.g., humans). The practicality of existing works addressing this challenge is being undermined due to either the restrictive assumptions of(More)
Mobility-on-demand (MoD) systems have recently emerged as a promising paradigm of one-way vehicle sharing for sustainable personal urban mobility in densely populated cities. We assume the capability of a MoD system to be enhanced by deploying robotic shared vehicles that can autonomously cruise the streets to be hailed by users. A key challenge of the MoD(More)
— The work in this paper describes a distributed layered architecture for resource-constrained multi-robot cooperation , which is utilized in autonomic mobile sensor network coverage. In the upper layer, a dynamic task allocation scheme self-organizes the robot coalitions to track efficiently across regions. It uses concepts of ant behavior to self-regulate(More)
A key problem of robotic environmental sensing and monitoring is that of active sensing: How can a team of robots plan the most informative observation paths to minimize the uncertainty in modeling and predicting an environmental phenomenon? This paper presents two principled approaches to efficient information-theoretic path planning based on entropy and(More)
Recent research in robot exploration and mapping has focused on sampling environmental hotspot fields. This exploration task is formalized by Low, Dolan, and Khosla (2008) in a sequential decision-theoretic planning under uncertainty framework called MASP. The time complexity of solving MASP approximately depends on the map resolution, which limits its use(More)
Recent research in multi-robot exploration and mapping has focused on sampling environmental fields, which are typically modeled using the Gaussian process (GP). Existing information-theoretic exploration strategies for learning GP-based environmental field maps adopt the non-Markovian problem structure and consequently scale poorly with the length of(More)