Learn More
ATP-binding cassette (ABC) drug transporters ABCB1 [P-glycoprotein (Pgp)] and ABCG2 are expressed in many tissues including those of the intestines, the liver, the kidney and the brain and are known to influence the pharmacokinetics and toxicity of therapeutic drugs. In vitro studies involving their functional characteristics provide important information(More)
CaMdr1p is a multidrug MFS transporter of pathogenic Candida albicans. An over-expression of the gene encoding this protein is linked to clinically encountered azole resistance. In-depth knowledge of the structure and function of CaMdr1p is necessary for an effective design of modulators or inhibitors of this efflux transporter. Towards this goal, in this(More)
P-glycoprotein (Pgp, ABCB1) is an ATP-Binding Cassette (ABC) transporter that is associated with the development of multidrug resistance in cancer cells. Pgp transports a variety of chemically dissimilar amphipathic compounds using the energy from ATP hydrolysis. In the present study, to elucidate the binding sites on Pgp for substrates and modulators, we(More)
A major multidrug transporter, MDR1 (multidrug resistance 1), a member of the MFS (major facilitator superfamily), invariably contributes to an increased efflux of commonly used azoles and thus corroborates their direct involvement in MDR in Candida albicans. The Mdr1 protein has two transmembrane domains, each comprising six transmembrane helices,(More)
By employing information theoretic measures, this study presents a structure and functional analysis of a multidrug-proton antiporter Mdr1p of Candida albicans. Since CaMdr1p belongs to drug-proton antiporter (DHA1) family of Major Facilitator Superfamily (MFS) of transporters, we contrasted DHA1 (antiporters) with Sugar Porter family (symporters).(More)
Letter to the Editor Nilotinib, imatinib (structures shown in Supplementary Figure S1) and other tyrosine kinase inhibitors (TKIs) have been shown to be transported by the ABC drug transporters P-glycoprotein (P-gp) and ABCG2 (1, 2). This is clinically important, as the transporters not only hamper the bioavailability of these TKIs but may also cause the(More)
  • 1