Khurum Nazir Junejo

Learn More
Text classification is widely used in applications ranging from e-mail filtering to review classification. Many of these applications demand that the classification method be efficient and robust, yet produce accurate categoriza-tions by using the terms in the documents only. We present a supervised text classification method based on discrimi-native term(More)
The volume of spam e-mails has grown rapidly in the last two years resulting in increasing costs to users, network operators, and e-mail service providers (ESPs). E-mail users demand accurate spam filtering with minimum effort from their side. Since the distribution of spam and non-spam e-mails is often different for different users a single filter trained(More)
The accurate prediction of Web navigation patterns has immense commercial value as the Web evolves into a primary medium for marketing and sales for many businesses. Often these predictions are based on complex temporal models of users' behavior learned from historical data. Such an approach, however, is not readily understandable by business people and(More)
Typically, spam filters are built on the assumption that the characteristics of e-mails in the training set is identical to those in individual users' inboxes on which it will be applied. This assumption is oftentimes incorrect leading to poor performance of the filter. A personalized spam filter is built by taking into account the characteristics of(More)
Cyber-physical systems (CPS) are often network integrated to enable remote management, monitoring, and reporting. Such integration has made them vulnerable to cyber attacks originating from an untrusted network (e.g., the internet). Once an attacker breaches the network security, he could corrupt operations of the system in question, which may in turn lead(More)
Content-based e-mail spam filtering continues to be a challenging machine learning problem. Usually, the joint distribution of e-mails and labels changes from user to user and from time to time, and the training data are poor representatives of the true distribution. E-mail service providers have two options for automatic spam filtering at the service-side:(More)
—Autonomic and autonomous systems exist within a world view of their own. This world view is created from the training data and assumptions that were available at their inception. In most of these systems this world view becomes obsolete over time due to changes in the environment. This brings a level of inaccuracy in the autonomic behavior of the system.(More)
  • 1