Khurram K. Afridi

Learn More
This paper presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage switching and near zero current switching across a wide range of input voltage, output voltage and power levels. The resistance compression network (RCN) maintains desired current(More)
This paper introduces a new resonant converter architecture that utilizes multiple inverters and a lossless impedance control network (ICN) to maintain zero voltage switching (ZVS) and near zero current switching (ZCS) across wide operating ranges. Hence, the ICN converter is able to operate at fixed frequency and maintain high efficiency across wide ranges(More)
More than 1.3 billion people in the world lack access to electricity and this energy poverty is a major barrier to human development. This paper describes a new concept of peer-to-peer electricity sharing which creates a marketplace for electricity. In this marketplace, the people who can afford power generating sources such as solar panels can sell(More)
In this paper, we introduce a step-down resonant dc-dc converter architecture based on the newly-proposed concept of an Impedance Control Network (ICN). The ICN architecture is designed to provide zero-voltage and near-zerocurrent switching of the power devices, and the proposed approach further uses inverter stacking techniques to reduce the voltages of(More)
The stacked switched capacitor (SSC) energy buffer is a recently proposed architecture for buffering energy between single-phase alternating and direct current. When used with film capacitors, it can increase the life of grid-interfaced power converters by eliminating limited-life electrolytic capacitors while maintaining comparable energy density. This(More)
Micro-inverters operating into the single-phase grid from solar photovoltaic (PV) panels or other low-voltage sources must buffer the twice-line-frequency variations between the energy sourced by the PV panel and that required for the grid. Moreover, in addition to operating over wide average power ranges, they inherently operate over a wide range of(More)
Resonant rectifiers have important applications in very-high-frequency (VHF) power conversion systems, including dc-dc converters, wireless power transfer systems, and energy recovery circuits for radio-frequency systems. In many of these applications, it is desirable for the rectifier to appear as a resistor at its ac input port. However, for a given dc(More)
Planar magnetic components using printed-circuitboard windings are attractive due to their high repeatability, good thermal performance and usefulness for realizing intricate winding patterns. To enable higher system integration at high switching frequency, more sophisticated methods that can rapidly and accurately model planar magnetics are needed. This(More)