Khanok Ratanakhanokchai

Learn More
An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, beta-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The(More)
The anaerobic thermophilic bacterium, Clostridium thermocellum, is a potent cellulolytic microorganism that produces large extracellular multienzyme complexes called cellulosomes. To isolate C. thermocellum organisms that possess effective cellulose-degrading ability, new thermophilic cellulolytic strains were screened from more than 800 samples obtained(More)
The objective of this work was to remove linamarin in starch from cassava (Manihot esculenta Crantz cv. KU-50) roots, a high-cyanogen variety by using plant cell wall-degrading enzymes, xylanase and cellulase. The combination of xylanase from Bacillus firmus K-1 and xylanase and cellulase from Paenibacillus curdlanolyticus B-6 at the ratio of 1:9 showed the(More)
A facultatively anaerobic bacterium, Paenibacillus curdlanolyticus B-6, isolated from an anaerobic digester produces an extracellular xylanolytic-cellulolytic enzyme system containing xylanase, beta-xylosidase, arabinofuranosidase, acetyl esterase, mannanase, carboxymethyl cellulase (CMCase), avicelase, cellobiohydrolase, beta-glucosidase, amylase, and(More)
Cellulase (CEL) presently constitutes a major group of industrial enzyme based on its diverse ranges of utilization. Apart from such current and well-established applications—as in cotton processing, paper recycling, detergent formulation, juice extraction, and animal feed additives—their uses in agricultural biotechnology and bioenergy have been exploited.(More)
Clostridium thermocellum is known to produce the cellulosomes with efficient plant cell wall degradation ability. To bring out the maximum cellulolytic ability of the cellulosomes, it is necessary to eliminate the end product inhibition by cellobiose. Combinations of β-glucosidases from thermophilic anaerobic bacteria and Aspergillusniger and C.thermocellum(More)
Paenibacillus curdlanolyticus B-6 Xyn10C is a single module xylanase consisting of a glycoside hydrolase family-10 catalytic module. The recombinant enzyme, rXyn10C, was produced by Escherichia coli and characterized. rXyn10C was highly active toward soluble xylans derived from rye, birchwood, and oat spelt, and slightly active toward insoluble wheat(More)
Napier grass is a promising energy crop in the tropical region. Feasible alkaline pretreatment technologies, including NaOH, Ca(OH)2, NH3, and alkaline H2O2 (aH2O2), were used to delignify lignocellulose with the aim of improving glucose recovery from Napier grass stem cellulose via enzymatic saccharification. The influences of the pretreatments on(More)
The objective of this work was to improve the purity of β-(1→3)(1→6)-glucan in the native triple helical structure from the fruiting bodies of Pleurotus sajor-caju for effective biological function using cell wall-degrading enzymes. A crude carbohydrate was extracted with hot water, then treated with crude xylanase and cellulase from Paenibacillus(More)
The nucleotide sequence of the Paenibacillus curdlanolyticus B-6 xyn10A gene, encoding a xylanase Xyn10A, consists of 3,828 nucleotides encoding a protein of 1,276 amino acids with a predicted molecular mass of 142,726 Da. Sequence analysis indicated that Xyn10A is a multidomain enzyme comprising nine domains in the following order: three family 22(More)