Learn More
Averaged magnetoencephalography (MEG) following somatosensory stimulation, somatosensory evoked magnetic field(s) (SEF), in humans are reviewed. The equivalent current dipole(s) (ECD) of the primary and the following middle-latency components of SEF following electrical stimulation within 80-100 ms are estimated in area 3b of the primary somatosensory(More)
Cerebral processing of first pain, associated with A delta-fibers, has been studied intensively, but the cerebral processing associated with unmyelinated C-fibers, relating to second pain, remains to be investigated. This is the first study to clarify the primary cortical processing of second pain by magnetoencephalography, through the selective activation(More)
Although direction selectivity is a cardinal property of neurons in the visual motion detection system, movement of numerous elements without global direction (incoherent motion) has been shown to activate human and monkey visual systems, as does coherent motion which has global direction. We used magnetoencephalography to investigate the neural process(More)
The conduction velocities of Abeta-, Adelta- and C-fibers of a peripheral nerve of the upper limb in normal subjects were measured by a combination of conventional electric stimulation, painful CO(2) laser stimulation and non-painful CO(2) laser stimulation of a tiny skin surface area, respectively. The values obtained were 69.1+/-7.4 m/s, 10.6+/-2.1 and(More)
Pain-related somatosensory-evoked potential following CO(2) laser stimulation (laser-evoked potential (LEP)) is now used not only for research objectives, but also for clinical applications. Estimating the conduction velocity (CV) of the spinothalamic tract (STT) by analyzing LEP following activation of Adelta-fibers (Adelta-CVSTT) by CO(2) laser(More)
DESIGN AND METHODS We investigated the effects of continuous visual (cartoon and random dot motion) and auditory (music) stimulation on somatosensory evoked magnetic fields (SEFs) following electrical stimulation of the median nerve on 12 normal subjects using paired t test and two way ANOVA for the statistics. RESULTS In the hemisphere contralateral to(More)
In our previous study, continuous visual (cartoon and random dot motion) and auditory (music) stimulation changed the somatosensory evoked magnetic fields following electrical stimulation of the median nerve in human subjects. They enhanced the middle-latency components (3M and 4M) generated in the contralateral primary somatosensory cortex, and reduced the(More)
To investigate whether humans achieve a high sensitivity to coherent motion by excluding the response to incoherent motion, we measured the magnetoencephalographic response to the motion of randomly located dots one half of which moved coherently while the other half moved incoherently. The response was related to the faster motion of either coherent or(More)
  • 1