Khaled Z. Ibrahim

Learn More
Live migration is a widely used technique for resource consolidation and fault tolerance. KVM and Xen use iterative pre-copy approaches which work well in practice for commercial applications. In this paper, we study pre-copy live migration of MPI and OpenMP scientific applications running on KVM and present a detailed performance analysis of the migration(More)
Scalability of applications on distributed sharedmemory (DSM) multiprocessors is limited by communication overheads. At some point, using more processors to increase parallelism yields diminishing returns or even degrades performance. When increasing concurrency is futile, we propose an additional mode of execution, called slipstream mode, that instead(More)
Computing the actions of Wilson-Dirac operator contributes most of the CPU time for the grand challenge problem of simulating Lattice Quantum Chromodynamics (Lattice QCD). This routine exhibits many challenges in implementation on most computational environments because of the multiple patterns of accessing the same data, making it difficult to align the(More)
We report our experiences porting Spark to large production HPC systems. While Spark performance in a data center installation (with local disks) is dominated by the network, our results show that file system metadata access latency can dominate in a HPC installation using Lustre: it determines single node performance up to 4x slower than a typical(More)
Simulation time for the classical problem of Lattice Quantum Chromodynamics (Lattice QCD) is dominated by one kernel routine responsible for computing the actions of a Dirac operator. This paper describes an experience in parallelizing this kernel routine. We explore parallelization granularities for this kernel routine on Graphical Processing Units (GPUs).(More)
The next decade of high-performance computing (HPC) systems will see a rapid evolution and divergence of multiand manycore architectures as power and cooling constraints limit increases in microprocessor clock speeds. Understanding efficient optimization methodologies on diverse multicore designs in the context of demanding numerical methods is one of the(More)
For decades, computer scientists have sought guidance on how to evolve architectures, languages, and programming models in order to improve application performance, efficiency, and productivity. Unfortunately, without overarching advice about future directions in these areas, individual guidance is inferred from the existing software/hardware ecosystem, and(More)
Reliable predictive simulation capability addressing confinement properties in magnetically confined fusion plasmas is critically-important for ITER, a 20 billion dollar international burning plasma device under construction in France. The complex study of kinetic turbulence, which can severely limit the energy confinement and impact the economic viability(More)
In this paper we characterize the behavior with respect to memory locality management of scientific computing applications running in virtualized environments. NUMA locality on current solutions (KVM and Xen) is enforced by pinning virtual machines to CPUs and providing NUMA aware allocation in hyper visors. Our analysis shows that due to two-level memory(More)
The gyrokinetic Particle-in-Cell (PIC) method is a critical computational tool enabling petascale fusion simulation research. In this work, we present novel multi- and manycore-centric optimizations to enhance performance of GTC, a PIC-based production code for studying plasma microturbulence in tokamak devices. Our optimizations encompass all six GTC(More)