Learn More
Driven by recent vision and graphics applications such as image segmentation and object recognition, assigning pixel-accurate saliency values to uniformly highlight foreground objects becomes increasingly critical. More often, such fine-grained saliency detection is also desired to have a fast runtime. Motivated by these, we propose a generic and fast(More)
Driven by recent vision and graphics applications such as image segmentation and object recognition, computing pixel-accurate saliency values to uniformly highlight foreground objects becomes increasingly important. In this paper, we propose a unified framework called pixelwise image saliency aggregating (PISA) various bottom-up cues and priors. It(More)
Human activity understanding with 3D/depth sensors has received increasing attention in multimedia processing and interactions. This work targets on developing a novel deep model for automatic activity recognition from RGB-D videos. We represent each human activity as an ensemble of cubic-like video segments, and learn to discover the temporal structures(More)
Recent successes in learning-based image classification, however, heavily rely on the large number of annotated training samples, which may require considerable human efforts. In this paper, we propose a novel active learning framework, which is capable of building a competitive classifier with optimal feature representation via a limited amount of labeled(More)
Understanding human activity is very challenging even with the recently developed 3D/depth sensors. To solve this problem, this work investigates a novel deep structured model, which adaptively decomposes an activity instance into temporal parts using the convolutional neural networks. Our model advances the traditional deep learning approaches in two(More)
Feature representation and object category classification are two key components of most object detection methods. While significant improvements have been achieved for deep feature representation learning, traditional SVM/softmax classifiers remain the dominant methods for the final object category classification. However, SVM/softmax classifiers lack the(More)
Human pose estimation (i.e., locating the body parts / joints of a person) is a fundamental problem in human-computer interaction and multimedia applications. Significant progress has been made based on the development of depth sensors, i.e., accessible human pose prediction from still depth images~\cite{rf12pami}. However, most of the existing approaches(More)
This paper aims to develop a novel cost-effective framework for face identification, which progressively maintains a batch of classifiers with the increasing face images of different individuals. By naturally combining two recently rising techniques: active learning (AL) and self-paced learning (SPL), our framework is capable of automatically annotating new(More)
Recently, machine learning based single image super resolution (SR) approaches focus on jointly learning representations for high-resolution (HR) and low-resolution (LR) image patch pairs to improve the quality of the super-resolved images. However, due to treat all image pixels equally without considering the salient structures, these approaches usually(More)
Aiming at improving performance of visual classification in a cost-effective manner, this paper proposes an incremental semi-supervised learning paradigm called Deep CoSpace (DCS). Unlike many conventional semi-supervised learning methods usually performing within a fixed feature space, our DCS gradually propagates information from labeled samples to(More)