Learn More
By incorporating the solvent effect into the Born effective radius, we have proposed an electronegativity scale of metal ions in aqueous solution with the most common oxidation states and hydration coordination numbers in terms of the effective ionic electrostatic potential. It is found that the metal ions in aqueous solution are poorer electron acceptors(More)
On the basis of the bond-valence model (BVM) and structure-map technology, the structural stability and formability of ABO(3)-type perovskite compounds were investigated in 376 ABO(3)-type compounds. A new criterion of structural stability for ABO(3)-type perovskite compounds has been established by the bond-valence calculated tolerance factors, which are(More)
We show that electronegativity can be used to effectively identify the hardness of crystal materials on the basis of a new microscopic model for hardness. Bond electronegativity is proposed to characterize the electron-holding energy of a bond, which is the intrinsic origin of hardness. Applying this model to c-BC(2)N materials, we confirm the proper bond(More)
The electronegativities of 82 elements in different valence states and with the most common coordination numbers have been quantitatively calculated on the basis of an effective ionic potential defined by the ionization energy and ionic radius. It is found that for a given cation, the electronegativity increases with increasing oxidation state and decreases(More)
Single-crystalline nanoporous Nb2O5 nanotubes were fabricated by a two-step solution route, the growth of uniform single-crystalline Nb2O5 nanorods and the following ion-assisted selective dissolution along the [001] direction. Nb2O5 tubular structure was created by preferentially etching (001) crystallographic planes, which has a nearly homogeneous(More)
A facile and reversible phase-transfer protocol for luminescent ZnO quantum dots (QDs) between methanol and hexane is presented. Oleylamine together with acetic acid trigger this reversible phase-transfer process, during which the structure and optical properties of the ZnO QDs are well-protected. ZnO QDs with a diameter of approximately 5 nm emit yellow(More)
By considering a first-order variation in electroaccepting and electrodonating powers, ω±, induced by a change from gas to aqueous solution phase, the solvent effect on ω± for charged ions is examined. The expression of electroaccepting and electrodonating powers in the solution phase, ω±s, is obtained through establishing the quantitative relationship(More)
A new electronegativity table of elements in covalent crystals with different bonding electrons and the most common coordination numbers is suggested on the basis of covalent potentials of atoms in crystals. For a given element, the electronegativity increases with increasing number of bonding electrons and decreases with increasing coordination number.(More)
Toward engineering high performance anode alloys for Li-ion batteries, we proposed a useful method to quantitatively estimate the bulk modulus of binary alloys in terms of metallic electronegativity (EN), alloy composition and formula volume. On the basis of our proposed potential viewpoint, EN as a fundamental chemistry concept can be extended to be an(More)
We have developed a method to predict the hardness of materials containing ultrastrong anionic polyhedra, dense atomic clusters, and layers stacked through van der Waals bonds on the basis of group electronegativity. By considering these polyhedra, clusters, and layers as groups that behave as rigid unities like superatoms bonding to other atoms or groups,(More)