Learn More
We present dynamics of spatial solitons propagating through a PT symmetric optical lattice with a longitudinal potential barrier. We find that a spatial soliton evolves a transverse drift motion after transmitting through the lattice barrier. The gain/loss coefficient of the PT symmetric potential barrier plays an essential role on such soliton dynamics.(More)
The optical properties of metal nanoparticle (NP)-coated silicon nanowires (Si NWs) are theoretically investigated using COMSOL Multiphysics commercial software. A geometrical array of periodic Si NWs coated with metal NPs is proposed. The simulation demonstrates that light absorption could be enhanced significantly in a long wavelength region of the solar(More)
Formation of a selective emitter in crystalline silicon solar cells improves photovoltaic conversion efficiency by decoupling emitter regions for light absorption (moderately doped) and metallization (degenerately doped). However, use of a selective emitter in silicon nanowire (Si NW) solar cells is technologically challenging because of difficulties in(More)
Defect modes are studied in parity-time (PT) symmetric periodic complex potentials for both positive and negative defects. Such new kinds of linear localized modes may conserve their energy or endure gain or loss upon propagating. The existence domain of the conserved modes would be prolonged by positive defects or shortened by negative defects, and the(More)
We perform a systematic numerical study to characterize the tradeoff between the plasmonic enhancement and optical loss in periodically aligned, silicon nanowire (SiNW) arrays integrated with a silver back reflector (Ag BR). Optimizing the embedded depth of the wire bottoms into a silver reflector achieved a highly efficient SiNW solar cell. Compared to the(More)
We report on a kind of self-assembled volume grating in silica glass induced by tightly focused femtosecond laser pulses. The formation of the volume grating is attributed to the multiple microexplosion in the transparent materials induced by the femtosecond pulses. The first order diffractive efficiency is in dependence on the energy of the pulses and the(More)
A thin-film solar cell with dual photonic crystals has been proposed, which shows an advanced light-trapping effect and superior performance in ultimate conversion efficiency (UCE). The shapes of nanocones have been optimized and discussed in detail by self-definition. The optimized shape of nanocone arrays (NCs) is a parabolic shape with a nearly linearly(More)
The antireflective characteristics of Si nanocone (NC) arrays were estimated using a theory devised for an inhomogeneous antireflection layer, and further verified by the Fourier modal method (FMM). Considering a better impedance matching from air to Si, a minimum depth of 400 nm is essentially required. Although Si NC arrays have usually been suggested to(More)
A novel multi-focusing metalens in the longitudinal direction has been proposed and investigated based on the equal optical path principle, which is independent on the incident polarizations and can be suitable for both of the linear and circular polarization incidences simultaneously. Here, three novel designing principles: partitioned mode, radial(More)
We report on the growth of GaSb nanotrees on InAs { ̅1 ̅1 ̅1}(B) substrates by chemical beam epitaxy. GaSb nanotrees form by the nucleation of Ga droplets on the surface of < ̅1 ̅1 ̅1>(B) oriented GaSb nanowires followed by the epitaxial growth of branches catalyzed by these Ga droplets. In the tip region, the trunks of the GaSb nanotrees are periodically(More)