Keya Wang

Learn More
We investigated soil CH4 fluxes from six forests along an urban-to-rural gradient in Guangzhou City metropolitan area, South China. The most significant CH4 consumption was found in the rural site, followed by suburban, and then urban forest sites. The rates of CH4 uptake were significantly higher (by 38% and 44%, respectively for mixed forest and broadleaf(More)
Increasing atmospheric nitrogen (N) deposition could profoundly impact community structure and ecosystem functions in forests. However, conventional experiments with understory addition of N (UAN) largely neglect canopy-associated biota and processes and therefore may not realistically simulate atmospheric N deposition to generate reliable impacts on forest(More)
  • 1