Kevin Y Sato

Learn More
Mechanical unloading in microgravity is thought to induce tissue degeneration by various mechanisms, including inhibition of regenerative stem cell differentiation. To address this hypothesis, we investigated the effects of microgravity on early lineage commitment of mouse embryonic stem cells (mESCs) using the embryoid body (EB) model of tissue(More)
Although an important contribution of ERK and JNK mitogen-activated protein kinase (MAPK) activation in Ras transformation of rodent fibroblasts has been determined, their role in mediating oncogenic Ras transformation of human tumor cells remains to be established. We have utilized the human HT1080 fibrosarcoma and DLD-1 colon carcinoma cell lines, which(More)
Exposure to microgravity causes significant mechanical unloading of mammalian tissues, resulting in rapid alterations of their physiology, which poses a significant risk for long-duration manned spaceflight. The immediate degenerative effects of spaceflight we understand best are those studied during short-term low-Earth-orbit experiments, and include rapid(More)
  • 1