Learn More
Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a(More)
SUMMARY Protein-protein interactions are essential to cellular and immune function, and in many cases, because of the absence of an experimentally determined structure of the complex, these interactions must be modeled to obtain an understanding of their molecular basis. We present a user-friendly protein docking server, based on the rigid-body docking(More)
The biophysical study of protein-protein interactions and docking has important implications in our understanding of most complex cellular signaling processes. Most computational approaches to protein docking involve a tradeoff between the level of detail incorporated into the model and computational power required to properly handle that level of detail.(More)
We present an evaluation of the results of our ZDOCK and RDOCK algorithms in Rounds 3, 4, and 5 of the protein docking challenge CAPRI. ZDOCK is a Fast Fourier Transform (FFT)-based, initial-stage rigid-body docking algorithm, and RDOCK is an energy minimization algorithm for refining and reranking ZDOCK results. Of the 9 targets for which we submitted(More)
Affinity maturation of the antibody response is a fundamental process in adaptive immunity during which B-cells activated by infection or vaccination undergo rapid proliferation accompanied by the acquisition of point mutations in their rearranged immunoglobulin (Ig) genes and selection for increased affinity for the eliciting antigen. The rate of somatic(More)
UNLABELLED CaGE is a Cardiac Gene Expression knowledgebase we have developed to facilitate the analysis of genes important to human cardiac function. CaGE integrates the functionality of the LocusLink database with data from several human cardiac expression libraries, phenotypic data from OMIM and data from large-scale microarray gene expression studies to(More)
Proteins often undergo conformational changes when binding to each other. A major fraction of backbone conformational changes involves motion on the protein surface, particularly in loops. Accounting for the motion of protein surface loops represents a challenge for protein-protein docking algorithms. A first step in addressing this challenge is to(More)
Protein-protein docking is the computational prediction of protein complex structure given the individually solved component protein structures. It is an important means for understanding the physicochemical forces that underlie macromolecular interactions and a valuable tool for modeling protein complex structures. Here, we report an overview of(More)
  • 1