Kevin W. Bowyer

Learn More
An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of “normal” examples with only a small percentage of “abnormal” or “interesting” examples. It is also the case that the(More)
Over the last couple of years, face recognition researchers have been developing new techniques. These developments are being fueled by advances in computer vision techniques, computer design, sensor design, and interest in fielding face recognition systems. Such advances hold the promise of reducing the error rate in face recognition systems by an order of(More)
Identification of people by analysis of gait patterns extracted from video has recently become a popular research problem. However, the conditions under which the problem is "solvable" are not understood or characterized. To provide a means for measuring progress and characterizing the properties of gait recognition, we introduce the humanlD gait challenge(More)
A methodology for evaluating range image segmentation algorithms is proposed. This methodology involves (a) a common set of 40 laser range nder images and 40 structured light scanner images that have manually speciied ground truth and (b) a set of deened performance metrics for instances of correctly segmented, missed and noise regions, over-and(More)
Many real world data mining applications involve learning from imbalanced data sets. Learning from data sets that contain very few instances of the minority (or interesting) class usually produces biased classifiers that have a higher predictive accuracy over the majority class(es), but poorer predictive accuracy over the minority class. SMOTE (Synthetic(More)
This survey focuses on recognition performed by matching models of the three-dimensional shape of the face, either alone or in combination with matching corresponding two-dimensional intensity images. Research trends to date are summarized, and challenges confronting the development of more accurate three-dimensional face recognition are identified. These(More)
This survey covers the historical development and current state of the art in image understanding for iris biometrics. Most research publications can be categorized as making their primary contribution to one of the four major modules in iris biometrics: image acquisition, iris segmentation, texture analysis and matching of texture representations. Other(More)
Previous works have shown that the ear is a promising candidate for biometric identification. However, in prior work, the preprocessing of ear images has had manual steps and algorithms have not necessarily handled problems caused by hair and earrings. We present a complete system for ear biometrics, including automated segmentation of the ear in a profile(More)