Kevin Tartour

Learn More
Interferon induced transmembrane proteins 1, 2 and 3 (IFITMs) belong to a family of highly related antiviral factors that have been shown to interfere with a large spectrum of viruses including Filoviruses, Coronaviruses, Influenza virus, Dengue virus and HIV-1. In all these cases, the reported mechanism of antiviral inhibition indicates that the pool of(More)
SAMHD1 is a newly identified restriction factor that targets lentiviruses in myeloid cells and is countered by the SIV(SM)/HIV-2 Vpx protein. By analyzing a large panel of Vpx mutants, we identify several residues throughout the 3-helix bundle predicted for Vpx that impair both its functionality and its ability to degrade SAMHD1. We determine that SAMHD1 is(More)
HIV-1, an enveloped RNA virus, produces viral particles that are known to be much more heterogeneous in size than is typical of non-enveloped viruses. We present here a novel strategy to study HIV-1 Viral Like Particles (VLP) assembly by measuring the size distribution of these purified VLPs and subsequent viral cores thanks to Atomic Force Microscopy(More)
To better characterize the behavior of HIV-1 capsids we developed EURT, for Entry/Uncoating assay based on core-packaged RNA availability and Translation. EURT is an alternative to Blam-Vpr, but as reporter RNA translation relies on core opening, it can be used to study viral capsids behavior. Our study reveals the existence of two major capsid species, a(More)
IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is(More)
Oral presentations Session 1: Entry & uncoating O1 Host cell polo-like kinases (PLKs) promote early prototype foamy virus (PFV) replication Irena Zurnic, Sylvia Hütter, Ute Lehmann, Nicole Stanke, Juliane Reh, Tobias Kern, Fabian Lindel, Gesche Gerresheim, Martin Hamann, Erik Müllers, Paul Lesbats, Peter Cherepanov, Erik Serrao, Alan Engelman, Dirk(More)
During evolution, organisms developed adaptative mechanisms to survive continuous aggressions from a variety of pathogens. Among these lines of defence, many cellular proteins have been described to modulate viral replication and are the subject of intense study. This review will focus on IFITM (interferon induced transmembrane protein), a family of(More)
  • 1