Kevin T. Sweeney

Learn More
Biosignal measurement and processing is increasingly being deployed in ambulatory situations particularly in connected health applications. Such an environment dramatically increases the likelihood of artifacts which can occlude features of interest and reduce the quality of information available in the signal. If multichannel recordings are available for a(More)
The combination of reducing birth rate and increasing life expectancy continues to drive the demographic shift toward an aging population. This, in turn, places an ever-increasing burden on healthcare due to the increasing prevalence of patients with chronic illnesses and the reducing income-generating population base needed to sustain them. The need to(More)
Artifact removal from physiological signals is an essential component of the biosignal processing pipeline. The need for powerful and robust methods for this process has become particularly acute as healthcare technology deployment undergoes transition from the current hospital-centric setting toward a wearable and ubiquitous monitoring environment.(More)
Accurate assessments of adherence and exercise performance are required in order to ensure that patients adhere to and perform their rehabilitation exercises correctly within the home environment. Inertial sensors have previously been advocated as a means of achieving these requirements, by using them as an input to an exercise biofeedback system. This(More)
The benefits of exercise in rehabilitation after orthopaedic surgery or following a musculoskeletal injury has been widely established. Within a hospital or clinical environment, adherence levels to rehabilitation exercise programs are high due to the supervision of the patient during the rehabilitation process. However, adherence levels drop significantly(More)
Connected health represents an increasingly important model for health-care delivery. The concept is heavily reliant on technology and in particular remote physiological monitoring. One of the principal challenges is the maintenance of high quality data streams which must be collected with minimally intrusive, inexpensive sensor systems operating in(More)
The use of inertial sensors to characterize pathological gait has traditionally been based on the calculation of temporal and spatial gait variables from inertial sensor data. This approach has proved successful in the identification of gait deviations in populations where substantial differences from normal gait patterns exist; such as in Parkinsonian(More)
BACKGROUND Longitudinal analyses of participants with a history of lateral ankle sprain are lacking. This investigation combined measures of inter-joint coordination and stabilometry to evaluate eyes-open (condition 1) and eyes-closed (condition 2) static unilateral stance performance in a group of participants, 6-months after they sustained an acute,(More)
Observation of a patient's respiration signal can provide a clinician with the required information necessary to analyse a subject's wellbeing. Due to an increase in population number and the aging population demographic there is an increasing stress being placed on current healthcare systems. There is therefore a requirement for more of the rudimentary(More)
fNIRS recordings are increasingly utilized to monitor brain activity in both clinical and connected health settings. These optical recordings provide a convenient measurement of cerebral hemodynamic changes which can be linked to motor and cognitive performance. Such measurements are of clinical utility in a broad range of conditions ranging from dementia(More)