Learn More
Using high-density oligonucleotide arrays representing essentially all nonrepetitive sequences on human chromosomes 21 and 22, we map the binding sites in vivo for three DNA binding transcription factors, Sp1, cMyc, and p53, in an unbiased manner. This mapping reveals an unexpectedly large number of transcription factor binding site (TFBS) regions, with a(More)
We assess the role of intrinsic histone-DNA interactions by mapping nucleosomes assembled in vitro on genomic DNA. Nucleosomes strongly prefer yeast DNA over Escherichia coli DNA, indicating that the yeast genome evolved to favor nucleosome formation. Many yeast promoter and terminator regions intrinsically disfavor nucleosome formation, and nucleosomes(More)
The N-terminal tails of core histones are subjected to multiple covalent modifications, including acetylation, methylation, and phosphorylation. Similar to acetylation, histone methylation has emerged as an important player in regulating chromatin dynamics and gene activity. Histone methylation occurs on arginine and lysine residues and is catalyzed by two(More)
Inflammation is linked clinically and epidemiologically to cancer, and NF-kappaB appears to play a causative role, but the mechanisms are poorly understood. We show that transient activation of Src oncoprotein can mediate an epigenetic switch from immortalized breast cells to a stably transformed line that forms self-renewing mammospheres that contain(More)
Dot1 is a non-SET domain protein that methylates histone H3 at lysine 79, a surface-exposed residue that lies within the globular domain. In the context of a nucleosome, H3 lysine 79 is located in close proximity with lysine 123 of histone H2B, a major site for ubiquitination by Rad6. Here we show that Rad6-mediated ubiquitination of H2B lysine 123 is(More)
Chromatin immunoprecipitation combined with microarray technology (Chip2) allows genome-wide determination of protein-DNA binding sites. The current standard method for analyzing Chip2 data requires additional control experiments that are subject to systematic error. We developed methods to assess significance using variance stabilization, learning(More)
The most widely used method for detecting genome-wide protein-DNA interactions is chromatin immunoprecipitation on tiling microarrays, commonly known as ChIP-chip. Here, we conducted the first objective analysis of tiling array platforms, amplification procedures, and signal detection algorithms in a simulated ChIP-chip experiment. Mixtures of human genomic(More)
Sin3 and Rpd3 negatively regulate a diverse set of yeast genes. A mouse Sin3-related protein is a transcriptional corepressor, and a human Rpd3 homolog is a histone deacetylase. Here, we show that Sin3 and Rpd3 are specifically required for transcriptional repression by Ume6, a DNA-binding protein that regulates genes involved in meiosis. A short region of(More)