Kevin Sinchak

Learn More
The central dogma of mammalian brain sexual differentiation has contended that sex steroids of gonadal origin organize the neural circuits of the developing brain. Recent evidence has begun to challenge this idea and has suggested that, independent of the masculinizing effects of gonadal secretions, XY and XX brain cells have different patterns of gene(More)
The mu-opioid receptor (MOR), a G-protein-coupled receptor, is internalized after endogenous agonist binding. Although receptor activation and internalization are separate events, internalization is a good assay for activation because endogenous opioid peptides all induce internalization. Estrogen treatment of ovariectomized rats induces MOR(More)
In rats, female sexual behavior is regulated by a well defined limbic-hypothalamic circuit that integrates sensory and hormonal information. Estradiol activation of this circuit results in mu-opioid receptor (MOR) internalization in the medial preoptic nucleus, an important step for full expression of sexual receptivity. Estradiol acts through both membrane(More)
The brain is an established target for peripheral steroids, but also expresses steroidogenic enzymes and is capable of de novo 'sex' steroid synthesis (neurosteroidogenesis) independent of peripheral steroidogenic organs. In adrenalectomized and ovariectomized rats that do not have peripheral sources of steroids, estrogen treatment increased progesterone(More)
As circulating estrogen levels rise on the afternoon of proestrus, they stimulate the hypothalamo-pituitary axis. This estrogen positive feedback is pivotal to stimulate the luteinizing hormone (LH) surge required for ovulation and luteinization of ovarian follicles. In addition to estrogen, pre-LH surge progesterone is critical for an LH surge as was(More)
The brain synthesizes steroids de novo, especially progesterone. Recently estradiol has been shown to stimulate progesterone synthesis in the hypothalamus and enriched astrocyte cultures derived from neonatal cortex. Estradiol-induced hypothalamic progesterone has been implicated in the control of the LH surge. The present studies were undertaken to(More)
Steroidogenesis is now recognized as a global phenomenon in the brain, but how it is regulated and its relationship to circulating steroids of peripheral origin have remained more elusive issues. Neurosteroids, steroids synthesized de novo in nervous tissue, have a large range of actions in the brain, but it is only recently that the role of(More)
Multiple studies demonstrate that coadministration of N-methyl-D-aspartate (NMDA) receptor antagonists with the opioid agonist morphine attenuates the development of analgesic tolerance. Sex differences in the effects of noncompetitive, but not competitive NMDA receptor antagonists on acute morphine analgesia, have been reported in mice, yet the role of sex(More)
A central event in mammalian reproduction is the LH surge that induces ovulation and corpus luteum formation. Typically, the LH surge is initiated in ovariectomized rats by sequential treatment with estrogen and progesterone (PROG). The traditional explanation for this paradigm is that estrogen induces PROG receptors (PR) that are activated by exogenous(More)
The localization of opioid receptor-like (ORL-1) orphan receptor in the ventromedial nucleus of the hypothalamus (VMH) suggested a role for this opioid system in the regulation of lordosis behavior. Recently, the ligand for ORL-1, orphanin FQ/nociceptin (OFQ/N), has been characterized and also demonstrated to be present in the VMH. The present experiments(More)