Kevin R. Forrester

Learn More
Laser Doppler imaging (LDI) has become a standard method for optical measurement of tissue perfusion, but is limited by low resolution and long measurement times. We have developed an analysis technique based on a laser speckle imaging method that generates rapid, high-resolution perfusion images. We have called it laser speckle perfusion imaging (LSPI).(More)
UNLABELLED Laser Doppler perfusion imaging (LDI) is an established technique for early assessment of burn depth to help determine a course of treatment. Laser speckle perfusion imaging (LSPI) is an alternative laser based, non-invasive perfusion monitoring technique that offers rapid and high resolution images of tissue. We have evaluated the ability of the(More)
UNLABELLED Laser Doppler perfusion imaging (LDI) is a useful tool for the early clinical assessment of burn depth and prognostic evaluation of injuries that may require skin grafting. We have evaluated two commercially available laser Doppler imagers for the perfusion measurement of normal and burn scar tissue. METHODS A single wavelength (635 nm),(More)
BACKGROUND AND OBJECTIVE Laser speckle perfusion imaging (LSPI) is a minimally invasive optical measure of relative changes in blood flow, providing real-time, high resolution, two-dimensional maps of vascular structure. Standard LSI imaging uses a light-reflective geometry that limits the measurement to a thin surface layer of 0.2-1 mm. The objective of(More)
BACKGROUND AND OBJECTIVES New instrumentation, based on a previously established laser speckle perfusion imaging (LSI) technique is evaluated for its ability to capture and generate blood flow images during endoscopic surgery. STUDY DESIGN/MATERIALS AND METHODS Investigations are detailed in an in-vitro blood flow model simulating physiological properties(More)
Sympathetic-derived neuropeptide Y (NPY) helps regulate inflammatory responses in injury and disease, is a vasoconstrictor, and stimulates angiogenesis. Rupture of the anterior cruciate ligament (ACL) is a common clinical presentation that results in tissue inflammation, hyperemia, and angiogenesis in the intact medial collateral ligament (MCL). This study(More)
BACKGROUND/PURPOSE The laser speckle perfusion imaging (LSPI) system is a new, non-invasive technique for rapidly and reproducibly measuring tissue perfusion. The high resolution and frame rate of the LSPI overcome many of the limitations of traditional laser Doppler imaging techniques. Therefore, LSPI is a useful means for evaluating blood flow in a(More)
Most techniques currently available to measure blood flow in bone are time consuming and require destruction of the tissue, but laser-Doppler technology offers a less invasive method. This study assessed the utility of laser-Doppler perfusion imaging (LDI) to measure perfusion in cortical bone. Twelve mature New Zealand White rabbits were assigned to one of(More)
This work represents the first clinical data acquired with the endoscopic laser speckle imaging (eLSPI) system, a new diagnostic tool developed for real-time imaging of tissue blood flow during endoscopic surgical procedures. eLSPI was used to image tissue perfusion in the medial compartment of the knee of five patients requiring arthroscopic knee surgery.(More)
Chronic inflammation associated with osteoarthritis (OA) may alter normal vascular responses and contribute to joint degradation. Vascular responses to vasoactive mediators were evaluated in the medial collateral ligament (MCL) of the anterior cruciate ligament (ACL)-deficient knee. Chronic joint instability and progressive OA were induced in rabbit knees(More)