Learn More
PURPOSE The purpose of this study was to utilize three-dimensional kinematic (motion) analysis to determine whether gender differences existed in knee valgus kinematics in high school basketball athletes when performing a landing maneuver. The hypothesis of this study was that female athletes would demonstrate greater valgus knee motion (ligament dominance)(More)
Neuromuscular training protocols that include both plyometrics and dynamic balance exercises can significantly improve biomechanics and neuromuscular performance and reduce anterior cruciate ligament injury risk in female athletes. The purpose of this study was to compare the effects of plyometrics (PLYO) versus dynamic stabilization and balance training(More)
PURPOSE Anterior cruciate ligament (ACL) injuries occur at a greater rate in adolescent females compared with males who participate in the same pivoting and jumping sports. The purpose of this study was to compare knee and ankle joint angles between males and females during an unanticipated cutting maneuver. The hypotheses were that female athletes would(More)
PURPOSE Biomechanical measures quantified during dynamic tasks with coupled epidemiological data in longitudinal experimental designs may be useful to determine which mechanisms underlie injury risk in young athletes. A key component is the ability to reliably measure biomechanical variables between testing sessions. The purpose was to determine the(More)
Deficits in dynamic neuromuscular control of the knee may contribute to the higher incidence of anterior cruciate ligament (ACL) injury in female athletes. There is evidence that neuromuscular training alters muscle firing patterns, as it decreases landing forces, improves balance, and reduces ACL injury incidence in female athletes. The purpose of this(More)
This study examined whether an extrinsic motivator, such as an overhead goal, during a plyometric jump may alter movement biomechanics. Our purpose was to examine the effects of an overhead goal on vertical jump height and lower-extremity biomechanics during a drop vertical jump and to compare the effects on female (N = 18) versus male (N = 17) athletes.(More)
The drop vertical jump (DVJ) task is commonly used to assess biomechanical performance measures that are associated with ACL injury risk in athletes. Previous investigations have solely assessed the first landing phase. We examined the first and second landings of a DVJ for differences in the magnitude of vertical ground reaction force (vGRF) and position(More)
The purpose of this study was to examine the effects of a comprehensive neuromuscular training program on measures of performance and lower-extremity movement biomechanics in female athletes. The hypothesis was that significant improvements in measures of performance would be demonstrated concomitant with improved biomechanical measures related to anterior(More)
BACKGROUND Neuromuscular training that includes both plyometric and dynamic stabilization/balance exercises alters movement biomechanics and reduces ACL injury risk in female athletes. The biomechanical effects of plyometric and balance training utilized separately are unknown. HYPOTHESIS A protocol that includes balance training without plyometric(More)
The purpose of this study was to identify gender differences in hip motion and kinetics during a single leg bidirectional deceleration maneuver. The rationale for the development of this maneuver was to test dynamic hip control during the deceleration of three different types of single-leg landings. The hypothesis was that female athletes would display(More)