Learn More
The way that nutrients cycle through atmospheric, terrestrial, oceanic and associated biotic reservoirs can constrain rates of biological production and help structure ecosystems on land and in the sea. On a global scale, cycling of nutrients also affects the concentration of atmospheric carbon dioxide. Because of their capacity for rapid growth, marine(More)
The southwestern Ross Sea (Antarctica) supports a large bloom of Phaeocystis antarctica in the Ross Sea polynya, which is impacted minimally by zooplankton and a smaller diatom bloom in the adjacent Terra Nova Bay polynya, which are more readily grazed. This difference in grazing pressure between the two regions frequently has been explained by a reduced(More)
Biological productivity in most of the world's oceans is controlled by the supply of nutrients to surface waters. The relative balance between supply and removal of nutrients--including nitrogen, iron and phosphorus--determines which nutrient limits phytoplankton growth. Although nitrogen limits productivity in much of the ocean, large portions of the(More)
The Ross Sea, Antarctica, supports two distinct populations of phytoplankton, one that grows well in sea ice and blooms in the shallow mixed layers of the Western marginal ice zone and the other that can be found in sea ice but thrives in the deeply mixed layers of the Ross Sea. Dominated by diatoms (e.g. Fragilariopsis cylindrus) and the prymnesiophyte(More)
The Southern Ocean is very important for the potential sequestration of carbon dioxide in the oceans and is expected to be vulnerable to changes in carbon export forced by anthropogenic climate warming. Annual phytoplankton blooms in seasonal ice zones are highly productive and are thought to contribute significantly to pCO2 drawdown in the Southern Ocean.(More)
A regional pigment retrieval algorithm for the Nimbus-7 Coastal Zone Color Scanner (CZCS) has been tested for the Southern Ocean. The pigment concentrations estimated with this algorithm agree to within 5 percent with in situ values and are more than twice as high as those previously reported. The CZCS data also revealed an asymmetric distribution of(More)
Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to approximately 3% of the annual new marine biological production, approximately 0.3 petagram of carbon per year. This input could account for the production of up to(More)
Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic(More)