Learn More
While rope is arguably a simpler system to simulate than cloth, the real-time simulation of rope, and knot tying in particular, raise unique and difficult issues in contact detection and management. Some practical knots can only be achieved by complicated crossings of the rope, yielding multiple simultaneous contacts, especially when the rope is pulled(More)
We describe the implementation details of a real-time surgical simulation system with soft-tissue modeling and multi-user, multi-instrument, networked haptics. The simulator is cross-platform and runs on various Unix and Windows platforms. It is written in C++ with OpenGL for graphics; GLUT, GLUI, and MUI for user interface; and supports parallel(More)
This paper details the use of a Virtual Environment for Reconstructive Surgery (VERS) in the case of a 17 year-old boy with a severe facial defect arising from the removal of a soft-tissue tumor. Computed tomography (CT) scans were taken of the patient, the data were segmented, a mesh was generated, and this patient-specific mesh was used in a virtual(More)
A novel, unobtrusive and wearable, multiparameter ambulatory physiologic monitoring system for space and terrestrial applications, termed LifeGuard, is presented. The core element is a wearable monitor, the crew physiologic observation device (CPOD), that provides the capability to continuously record two standard electrocardiogram leads, respiration rate(More)
This paper presents algorithms for animating de-formable objects in real-time. It focuses on computing the deformation of an object subject to external forces and detecting collisions among deformable and rigid objects. The targeted application domain is surgical training. This application relies more on visual realism than exact, patient-specific(More)
Today, there is growing interest in computer surgical simulation to enhance surgeons' training. This paper presents a simulation system based on novel algorithms for animating instruments interacting with deformable tissue in real-time. The focus is on computing the deformation of a tissue subject to external forces, and detecting collisions among(More)
Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of(More)
Monitoring vital signs in applications that require the subject to be mobile requires small, lightweight, and robust sensors and electronics. A body-worn system should be unobtrusive, noninvasive, and easy-to-use. It must be able to log vital signs data for several hours as well as transmit it on demand in real-time using secure wireless technologies. The(More)
Computer-based surgical simulation promises to provide a broader scope of clinical training through the introduction of anatomic variation, simulation of untoward events, and collection of performance data. We present a haptically-enabled surgical simulator for the most common techniques in diagnostic and operative hysteroscopy- cervical dilation,(More)
BACKGROUND Advances in computing over the last 10 years have rapidly improved imaging and simulation in health care. Implementation of three-dimensional protocols and image fusion techniques are moving diagnosis, treatment planning, and teaching to a next-generation paradigm. In addition, decreasing cost and increasing availability make generalized use of(More)