Kevin MacVittie

Learn More
The enzyme-based set-reset flip-flop memory system was designed with the core part composed of horseradish peroxidase and diaphorase biocatalyzing oxidation and reduction of redox species (2,6-dichloroindophenol or ferrocyanide). The biocatalytic redox reactions were activated by H(2)O(2) and NADH produced in situ by different enzymatic reactions allowing(More)
This review outlines advances in designing modified electrodes with switchable properties controlled by various physical and chemical signals. Irradiation of the modified electrode surfaces with various light signals, changing the temperature of the electrolyte solution, application of a magnetic field or electrical potentials, changing the pH of the(More)
We report a realization of an associative memory signal/information processing system based on simple enzyme-catalyzed biochemical reactions. Optically detected chemical output is always obtained in response to the triggering input, but the system can also "learn" by association, to later respond to the second input if it is initially applied in combination(More)
The electrochemical memristor based on a pH-switchable polymer-modified electrode integrated with a biofuel cell was designed and proposed for interfacing between biomolecular information processing and electronic systems. The present approach demonstrates a new application of biofuel cells in information processing systems, rather than for electrical power(More)
The present study aims at integrating drug-releasing materials with signal-processing biocomputing systems. Enzymes alanine transaminase (ALT) and aspartate transaminase (AST)—biomarkers for liver injury—were logically processed by a biocatalytic cascade realizing Boolean AND gate. Citrate produced in the system was used to trigger a drug-mimicking release(More)
Biocatalytic electrodes made of buckypaper were modified with PQQ-dependent glucose dehydrogenase on the anode and with laccase on the cathode and were assembled in a flow biofuel cell filled with serum solution mimicking the human blood circulatory system. The biofuel cell generated an open circuitry voltage, Voc, of ca. 470 mV and a short circuitry(More)
A biofuel cell composed of catalytic electrodes made of "buckypaper" modified with PQQ-dependent glucose dehydrogenase and FAD-dependent fructose dehydrogenase on the anode and with laccase on the cathode was used to activate a wireless information transmission system. The cathode/anode pair was implanted in orange pulp extracting power from its content(More)
This review article is an overview of the current state of the development of biochemical flip-flop memory systems for use with biocomputing. Of particular interest are those developed using chemical and biochemical systems and components, capable of the complete integration into existing biocomputing information processing systems. The integration of(More)