Learn More
Compared to ethanol, butanol offers many advantages as a substitute for gasoline because of higher energy content and higher hydrophobicity. Typically, 1-butanol is produced by Clostridium in a mixed-product fermentation. To facilitate strain improvement for specificity and productivity, we engineered a synthetic pathway in Escherichia coli and demonstrated(More)
The production of isobutanol in microorganisms has recently been achieved by harnessing the highly active 2-keto acid pathways. Since these 2-keto acids are precursors of amino acids, we aimed to construct an isobutanol production platform in Corynebacterium glutamicum, a well-known amino-acid-producing microorganism. Analysis of this host's sensitivity to(More)
Previously (Liu et al, Cancer Res., 56: 3371-3379, 1996), we isolated a novel serine protease-like gene--Normal Epithelial Cell Specific-1 (NES1)--that is expressed in normal mammary epithelial cells but is down-regulated in most breast cancer cell lines. Here, we demonstrate that stable expression of NES1 in the NES1-negative MDA-MB-231 breast cancer cell(More)
AIMS/HYPOTHESIS Beta cell inflammation and cytokine-induced toxicity are central to autoimmune diabetes development. Lipid mediators generated upon lipoxygenase (LO) activation can participate in inflammatory pathways. 12LO-deficient mice are resistant to streptozotocin-induced diabetes. This study sought to characterise the cellular processes involving(More)
Higher alcohols such as isobutanol possess several physical characteristics that make them attractive as biofuels such as higher energy densities and infrastructure compatibility. Here we have developed a rapid evolutionary strategy for isolating strains of Escherichia coli that effectively produce isobutanol from glucose utilizing random mutagenesis and a(More)
In order to find a photosensitizer with better optical properties and pharmacokinetics than Photofrin II, a series of new photosensitizers related to methyl pheophorbide-a and chlorin-e6 were synthesized. These compounds absorb at substantially longer wavelengths (lambda max 660 nm) than does Photofrin II (630 nm) and show promise for use in photodynamic(More)
Biophysical and photobiological properties of a group of bacteriochlorins were compared with efficacy of these products for photodynamic therapy of murine tumors. Predictive factors for selective photosensitization in vivo include affinity binding to lipoproteins greater than albumin, extinction coefficient at the wavelength of irradiation and tumor/skin(More)
Five cationic porphyrins bearing one to four -N(CH(3))(3)(+) groups linked to the p-phenyl positions of 5,10,15,20-tetraphenylporphyrin (TPP) were synthesized in order to study the effect of overall charge and its distribution on the cellular uptake, phototoxicity and intracellular localization using human carcinoma HEp2 cells. The di-cationic porphyrins(More)
The synthesis, preliminary in vivo biological activity, singlet oxygen and fluorescence yields of a series of alkyl ether derivatives of chlorophyll-alpha analogs are described. For short-chain carbon ethers (1-7 carbon units), it was observed that the biological activity increased by increasing the length of the carbon chain, being maximum in compounds(More)
The synthesis, photophysical characteristics, in vivo photosensitizing efficacy, human serum albumin (HSA) binding properties, and skin phototoxicity of some stable bacteriochlorins were investigated. The novel bacteriochlorins, obtained from chlorophyll-a, have long-wavelength absorptions in the range lambda max = 734-758 nm. Preferential migration of(More)