Learn More
Rapid in situ degradation of chlorinated solvents present as nonaqueous phase liquids (NAPL) can be accomplished using reactive zerovalent nanoiron particles. Prior studies have shown that nanoiron transport in the subsurface is limited, and successful delivery of the nanoiron is essential for effective remediation. Here, the physical properties of bare and(More)
Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explicitly examines how coatings control NZVI adhesion to model(More)
Nanoscale zerovalent iron (NZVI) rapidly transforms many environmental contaminants to benign products and is a promising in-situ remediation agent. To be effective, NZVI should form stable dispersions in water such that it can be delivered in water-saturated porous media to the contaminated area. Limited mobility of NZVI has been reported, however,(More)
Reactive zero valent iron nanoparticles can degrade toxic nonaqueous phase liquids (NAPL) rapidly in contaminated groundwater to nontoxic products in situ, provided they can be delivered preferentially to the NAPL/water (oil/water) interface. This study demonstrates the ability of novel triblock copolymers to modify the nanoiron surface chemistry in a way(More)
Fully sulfonated poly(styrenesulfonate) brushes were grown from the surface of colloidal silica particles and used to prepare stable trichloroethylene-in-water and heptane-in-water Pickering emulsions. These particles were highly charged and colloidally stable in water but could not be dispersed in trichloroethylene or heptane. Both two-phase (emulsion plus(More)
Ion-Induced Nucleation of Atmospheric Aerosols………………………………………………………...31 Abstract: Delivering Functional Fe(0)-Based Nanoparticles for In Situ Degradation of DNAPL Chlorinated Organic Solvents…………………………………………………………………………………………44 Abstract: Nanostructured Catalysts for Environmental Remediation of Chlorinated Compounds………………….52 Abstract: Synthesis and(More)
  • 1