Kevin M. Myles

Learn More
The natural maintenance cycles of many mosquito-borne pathogens require establishment of persistent non-lethal infections in the invertebrate host. The mechanism by which this occurs is not well understood, but we have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is important in modulating the pathogenesis of(More)
Mosquito-borne viruses cause significant levels of morbidity and mortality in humans and domesticated animals. Maintenance of mosquito-borne viruses in nature requires a biological transmission cycle that involves alternating virus replication in a susceptible vertebrate and mosquito host. Although the vertebrate infection is acute and often associated with(More)
Transgenic mosquitoes resistant to malaria parasites are being developed to test the hypothesis that they may be used to control disease transmission. We have developed an effector portion of an antiparasite gene that can be used to test malaria resistance in transgenic mosquitoes. Mouse monoclonal antibodies that recognize the circumsporozoite protein of(More)
Alphavirus transducing systems (ATSs) are alphavirus-based tools for expressing genes in insects. Here we describe an ATS (5'dsMRE16ic) based entirely on Sindbis MRE16 virus. GFP expression was used to characterize alimentary tract infections and dissemination in three Culicine and two Lepidopteran species. Following per os infection, 5'dsMRE16ic-EGFP(More)
The presence of full-length complements of viral genomic RNA is a hallmark of RNA virus replication within an infected cell. As such, methods for detecting and measuring specific strands of viral RNA in infected cells and tissues are important in the study of RNA viruses. Strand-specific quantitative real-time PCR (ssqPCR) assays are increasingly being used(More)
The Sindbis virus (Alphavirus; Togaviridae) strain MRE16 efficiently infects Aedes aegypti mosquitoes that ingest a blood meal containing 8 to 9 log(10) PFU of virus/ml. However, a small-plaque variant of this virus, MRE16sp, poorly infects mosquitoes after oral infection with an equivalent titer. To determine the genetic differences between MRE16 and(More)
In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has(More)
We have constructed an orally infectious Sindbis virus, ME2/5'2J/GFP, that expresses green fluorescent protein (GFP) in the midgut of Aedes aegypti and in other tissues as the virus disseminates. This virus has two unique features that are improvements over the SIN-based expression systems currently used in mosquitoes. First, a subgenomic RNA promoter and(More)
A double subgenomic Sindbis (dsSIN) virus, MRE/3'2 J/GFP, was constructed to efficiently express green fluorescent protein (GFP) in the midgut of Aedes aegypti following per os infection. The MRE/3'2 J/GFP RNA genome contained the nonstructural genes and cis-acting sequences of the dsSIN virus, TE/3'2 J/GFP, but had the structural genes of MRE16 SIN virus.(More)
Arthropod-borne alphaviruses transmitted by mosquitoes almost exclusively use culicines; however, the alphavirus o'nyong-nyong (ONNV) has the unusual characteristic of being transmitted primarily by anopheline mosquitoes. This unusual attribute makes ONNV a valuable tool in the characterization of mosquito determinants of infection as well as a useful(More)