Learn More
Olfactory receptor neurons are produced continuously in mammalian olfactory epithelium in vivo, but in explant cultures neurogenesis ceases abruptly. We show that in vitro neurogenesis is prolonged by fibroblast growth factors (FGFs), which act in two ways. FGFs increase the likelihood that immediate neuronal precursors (INPs) divide twice, rather than(More)
Several FGF family members are expressed in skeletal muscle; however, the roles of these factors in skeletal muscle development are unclear. We examined the RNA expression, protein levels, and biological activities of the FGF family in the MM14 mouse skeletal muscle cell line. Proliferating skeletal muscle cells express FGF-1, FGF-2, FGF-6, and FGF-7 mRNA.(More)
Duchenne muscular dystrophy (DMD) is a devastating disease characterized by muscle wasting, loss of mobility and death in early adulthood. Satellite cells are muscle-resident stem cells responsible for the repair and regeneration of damaged muscles. One pathological feature of DMD is the progressive depletion of satellite cells, leading to the failure of(More)
The loss of normal weight-bearing activity, which occurs during bed rest, limb immobilization, and spaceflight, stimulates a catabolic response within the musculoskeletal system, which results in a loss of skeletal muscle mass and bone mineral. The mechanism by which loading of muscle and bone is sensed and translated into signals controlling tissue(More)
Skeletal muscle is composed of diverse fiber types, yet the underlying molecular mechanisms responsible for this diversification remain unclear. Herein, we report that the extracellular signal-regulated kinase (ERK) 1/2 pathway, but not p38 or c-Jun NH(2)-terminal kinase (JNK), is preferentially activated in fast-twitch muscles. Pharmacological blocking of(More)
BACKGROUND Electroporation (EP) is a widely used non-viral gene transfer method. We have attempted to develop an exact protocol to maximize DNA expression while minimizing tissue damage following EP of skeletal muscle in vivo. Specifically, we investigated the effects of varying injection techniques, electrode surface geometry, and plasmid mediums. (More)
Skeletal muscle atrophy results from an imbalance in protein degradation and protein synthesis and occurs in response to injury, various disease states, disuse, and normal aging. Current treatments for this debilitating condition are inadequate. More information about mechanisms involved in the onset and progression of muscle atrophy is necessary for(More)
BACKGROUND Skeletal muscle atrophy can occur under many different conditions, including prolonged disuse or immobilization, cachexia, cushingoid conditions, secondary to surgery, or with advanced age. The mechanisms by which unloading of muscle is sensed and translated into signals controlling tissue reduction remains a major question in the field of(More)
INTRODUCTION We investigated the mechanism by which the MERG1a K+ channel increases ubiquitin proteasome proteolysis (UPP). METHODS Hindlimb suspension and electro-transfer of Merg1a cDNA into mouse gastrocnemius muscles induced atrophy. RESULTS Atrophic gastrocnemius muscles of hindlimb-suspended mice express Merg1a, Murf1, and Mafbx genes.(More)
As a principal tissue responsible for insulin-mediated glucose uptake, skeletal muscle is important for whole-body health. The role of peripheral endocannabinoids as regulators of skeletal muscle metabolism has recently gained a lot of interest, as endocannabinoid system disorders could cause peripheral insulin resistance. We investigated the role of the(More)