Learn More
A large proportion of the 6,000 genes present in the genome of Saccharomyces cerevisiae, and of those sequenced in other organisms, encode proteins of unknown function. Many of these genes are "silent, " that is, they show no overt phenotype, in terms of growth rate or other fluxes, when they are deleted from the genome. We demonstrate how the intracellular(More)
Measurements of early tumor responses to therapy have been shown, in some cases, to predict treatment outcome. We show in lymphoma-bearing mice injected intravenously with hyperpolarized [1-(13)C]pyruvate that the lactate dehydrogenase-catalyzed flux of (13)C label between the carboxyl groups of pyruvate and lactate in the tumor can be measured using (13)C(More)
As alterations in tissue pH underlie many pathological processes, the capability to image tissue pH in the clinic could offer new ways of detecting disease and response to treatment. Dynamic nuclear polarization is an emerging technique for substantially increasing the sensitivity of magnetic resonance imaging experiments. Here we show that tissue pH can be(More)
Vascular and angiogenic processes provide an important target for novel cancer therapeutics. Dynamic contrast-enhanced magnetic resonance imaging is being used increasingly to noninvasively monitor the action of these therapeutics in early-stage clinical trials. This publication reports the outcome of a workshop that considered the methodology and design of(More)
The evolutionarily conserved SLX4 protein, a key regulator of nucleases, is critical for DNA damage response. SLX4 nuclease complexes mediate repair during replication and can also resolve Holliday junctions formed during homologous recombination. Here we describe the phenotype of the Btbd12 knockout mouse, the mouse ortholog of SLX4, which recapitulates(More)
Dynamic nuclear polarization of (13)C-labeled cell substrates has been shown to massively increase their sensitivity to detection in NMR experiments. The sensitivity gain is sufficiently large that if these polarized molecules are injected intravenously, their spatial distribution and subsequent conversion into other cell metabolites can be imaged. We have(More)
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst formation in the kidney, liver, and pancreas and is associated often with cardiovascular abnormalities such as hypertension, mitral valve prolapse, and intracranial aneurysms. It is caused by mutations in PKD1 or PKD2, encoding polycystin-1 and -2, which together form a cell(More)
Detection of early tumor responses to treatment can give an indication of clinical outcome. Positron emission tomography measurements of the uptake of the glucose analog, [(18)F] 2-fluoro-2-deoxy-D-glucose (FDG), have demonstrated their potential for detecting early treatment response in the clinic. We have shown recently that (13)C magnetic resonance(More)
The lack of any markers for oligodendrocyte precursors that can be visualized within the intact CNS is a significant barrier to trials of transplantation of these cells which aim to enhance remyelination in multiple sclerosis. We have therefore asked whether dextran-coated superparamagnetic iron oxide (SPIO) can be used to label cells prior to(More)
Dynamic nuclear polarization is an emerging technique for increasing the sensitivity of magnetic resonance imaging and spectroscopy, particularly for low-γ nuclei. The technique has been applied recently to a number of 13C-labeled cell metabolites in biological systems: the increase in signal-to-noise allows the spatial distribution of an injected molecule(More)