Kevin L Taylor

Learn More
Angiogenesis is a multistep process of critical importance both in development and in physiological and pathophysiological processes in the adult. It involves endothelial cell (EC) sprouting from the parent vessel, followed by migration, proliferation, alignment, tube formation, and anastomosis to other vessels. Several in vitro models have attempted to(More)
Angiogenesis is essential for normal homeostasis, wound healing, and tumor growth and involves a switch in endothelial cell (EC) phenotype from quiescence to migration, proliferation and network formation, and back to quiescence. The notch signaling pathway is critically involved in cell fate decisions during development, and mice deficient in several(More)
Angiogenesis is critical for many physiological and pathological processes. We show here that the lipid sphingosylphosphorylcholine (SPC) induces angiogenesis in vivo and GPR4 is required for the biological effects of SPC on endothelial cells (EC). In human umbilical vein EC, down-regulation of GPR4 specifically inhibits SPC-, but not(More)
Vascular endothelial growth factor (VEGF) is essential for the induction of angiogenesis and drives both endothelial cell (EC) proliferation and migration. It has been suggested that VEGF also regulates vessel diameter, although this has not been tested explicitly. The two most abundant isoforms, VEGF121 and VEGF165, both signal through VEGF receptor 2(More)
  • 1