Kevin L. Stark

Learn More
The kidney has been widely exploited as a model system for the study of tissue inductions regulating vertebrate organogenesis. Kidney development is initiated by the ingrowth of the Wolfian duct-derived ureteric bud into the presumptive kidney mesenchyme. In response to a signal from the ureter, mesenchymal cells condense, aggregate into pretubular clusters(More)
Amphibian studies have implicated Wnt signaling in the regulation of mesoderm formation, although direct evidence is lacking. We have characterized the expression of 12 mammalian Wnt-genes, identifying three that are expressed during gastrulation. Only one of these, Wnt-3a, is expressed extensively in cells fated to give rise to embryonic mesoderm, at egg(More)
The Notch gene family encodes large transmembrane receptors that are components of an evolutionarily conserved intercellular signaling mechanism. To assess the role of the Notch4 gene, we generated Notch4-deficient mice by gene targeting. Embryos homozygous for this mutation developed normally, and homozygous mutant adults were viable and fertile. However,(More)
We have isolated cDNA clones that encode a novel human gene related to agouti. Sequence analysis of this gene, named ART, for agouti-related transcript, predicts a 132-amino-acid protein that is 25% identical to human agouti. The highest degree of identity is within the carboxyl terminus of both proteins. Like agouti, ART contains a putative signal sequence(More)
The Notch signaling pathway is essential for embryonic vascular development in vertebrates. Here we show that mouse embryos heterozygous for a targeted mutation in the gene encoding the DLL4 ligand exhibit haploinsufficient lethality because of defects in vascular remodeling. We also describe vascular defects in embryos homozygous for a mutation in the(More)
We report the cloning and characterization of a new member of the Delta family of Notch ligands, which we have named Dll4. Like other Delta genes, Dll4 is predicted to encode a membrane-bound ligand, characterized by an extracellular region containing several EGF-like domains and a DSL domain required for receptor binding. In situ analysis reveals a highly(More)
We have used the polymerase chain reaction to clone from fetal cerebellar RNA a novel member of the fibroblast growth factor receptor family, FGFR-4. cDNAs encoding a full-length receptor were isolated and RNA expression examined in adult and fetal tissues by RNA blot analysis. Transcripts were detected in adult lung, liver and kidney and in fetal RNAs from(More)
The mCAT-1 gene encodes a basic amino acid transporter that also acts as the receptor for murine ecotropic leukemia viruses. Targeted mutagenesis in embryonic stem cells has been used to introduce a germ-line null mutation into this gene. This mutation removes a domain critical for virus binding and inactivates amino acid transport activity. Homozygous(More)
Agouti-related protein (AGRP) is an endogenous antagonist of the melanocortin action.(1) In the hypothalamus, melanocortin peptide agonists act as satiety-inducing factors that mediate their action through the melanocortin-4 receptor (MC4R) whereas AGRP is an opposing orexigenic agent. Novel inhibitors of the AGRP/MC4 binding based on(More)