Learn More
To determine the relationship between cerebral Glc metabolism and glutamatergic neuronal function, we used 13C NMR spectroscopy to measure, simultaneously, the rates of the tricarboxylic acid cycle and Gln synthesis in the rat cortex in vivo. From these measurements, we calculated the rates of oxidative Glc metabolism and glutamate-neurotransmitter cycling(More)
Localized 1H NMR spectroscopy in conjunction with J editing was used to measure the concentration of gamma-aminobutyric acid (GABA) in the occipital lobe of four control human volunteers and four epileptic volunteers who were receiving the drug vigabatrin. The GABA concentration measured in four nonepileptic subjects was 1.1 +/- 0.1 mumol/cm3 of brain,(More)
Recent 13C NMR studies in rat models have shown that the glutamate/glutamine cycle is highly active in the cerebral cortex and is coupled to incremental glucose oxidation in an approximately 1:1 stoichiometry. To determine whether a high level of glutamatergic activity is present in human cortex, the rates of the tricarboxylic acid cycle, glutamine(More)
A mathematical model of cerebral glucose metabolism was developed to analyze the isotopic labeling of carbon atoms C4 and C3 of glutamate following an intravenous infusion of [1-13C]glucose. The model consists of a series of coupled metabolic pools representing glucose, glycolytic intermediates, tricarboxylic acid (TCA) cycle intermediates, glutamate,(More)
Prior 13C magnetic resonance spectroscopy (MRS) experiments, which simultaneously measured in vivo rates of total glutamate-glutamine cycling (V(cyc(tot))) and neuronal glucose oxidation (CMR(glc(ox), N)), revealed a linear relationship between these fluxes above isoelectricity, with a slope of approximately 1. In vitro glial culture studies examining(More)
Quantitative magnetic resonance imaging (MRI) and spectroscopy (MRS) measurements of energy metabolism (i.e. cerebral metabolic rate of oxygen consumption, CMR(O2)), blood circulation (i.e. cerebral blood flow, CBF, and volume, CBV), and functional MRI (fMRI) signal over a wide range of neuronal activity and pharmacological treatments are used to interpret(More)
Macromolecule resonances underlying metabolites in 1H NMR spectra were investigated in temporal lobe biopsy tissue from epilepsy patients and from localized 1H spectra of the brains of healthy volunteers. The 1H NMR spectrum of brain tissue was compared with that of cytosol and dialyzed cytosol after removal of low molecular weight molecules (< 3500(More)
The complex activities of the brain need not distract us from the certainty that it uses energy and performs work very efficiently. The human brain, which claims approximately 2% of our body mass, is responsible for approximately 20% of our body oxygen consumption. In vivo magnetic resonance spectroscopy (MRS) follows the metabolic pathways of energy(More)
Increasing evidence supports a crucial role for glial metabolism in maintaining proper synaptic function and in the etiology of neurological disease. However, the study of glial metabolism in humans has been hampered by the lack of noninvasive methods. To specifically measure the contribution of astroglia to brain energy metabolism in humans, we used a(More)
The aims of this study were twofold: (i) to determine quantitatively the contribution of glutamate/glutamine cycling to total astrocyte/neuron substrate trafficking for the replenishment of neurotransmitter glutamate; and (ii) to determine the relative contributions of anaplerotic flux and glutamate/glutamine cycling to total glutamine synthesis. In this(More)