Kevin J Whittlesey

Learn More
Manipulation of cellular processes in vivo by the delivery of drugs, proteins or DNA is of paramount importance to neuroscience research. Methods for the presentation of these molecules vary widely, including direct injection (either systemic or stereotactic), osmotic pump-mediated chronic delivery, or even implantation of cells engineered to indefinitely(More)
Bridges for treatment of the injured spinal cord must stabilize the injury site to prevent secondary damage and create a permissive environment that promotes regeneration. The host response to the bridge is central to creating a permissive environment, as the cell types that respond to the injury have the potential to secrete both stimulatory and inhibitory(More)
Biomaterials capable of efficient gene delivery provide a fundamental tool for basic and applied research models, such as promoting neural regeneration. We developed a system for the encapsulation and sustained release of plasmid DNA complexed with a cationic lipid and investigated their efficacy using in vitro models of neurite outgrowth. Sustained(More)
Natural tissues can have complex architectures, which arise in part from spatial patterns in gene expression. Regenerative strategies for damaged tissue must recreate these architectures to restore function. In this article, we demonstrate spatially controlled gene delivery from a substrate for directing cellular processes. Non-viral vectors were(More)
  • 1