Kevin J. Morey

Learn More
Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively(More)
BACKGROUND There is an unmet need to monitor human and natural environments for substances that are intentionally or unintentionally introduced. A long-sought goal is to adapt plants to sense and respond to specific substances for use as environmental monitors. Computationally re-designed periplasmic binding proteins (PBPs) provide a means to design highly(More)
Plants have evolved elegant mechanisms to continuously sense and respond to their environment, suggesting that these properties can be adapted to make inexpensive and widely used biological monitors, or sentinels, for human threats. For a plant to be a sentinel, a reporting system is needed for large areas and widespread monitoring. The reporter or readout(More)
One area of focus in the emerging field of plant synthetic biology is the manipulation of systems involved in sensing and response to environmental signals. Sensing and responding to signals, including ligands, typically involves biological signal transduction. Plants use a wide variety of signaling systems to sense and respond to their environment. One of(More)
Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional(More)
Synthetic biology uses biological components to engineer new functionality in living organisms. We have used the tools of synthetic biology to engineer detector plants that can sense man-made chemicals, such as the explosive trinitrotoluene, and induce a response detectable by eye or instrumentation. A goal of this type of work is to make the designed(More)
BACKGROUND The geminivirus and nanovirus families of DNA plant viruses have proved to be a fertile source of viral genomic sequences, clearly demonstrated by the large number of sequence entries within public DNA sequence databases. Due to considerable conservation in genome organization, these viruses contain easily identifiable intergenic regions that(More)
Gln synthetase (GS) is the key enzyme in N metabolism and it catalyzes the synthesis of Gln from glutamic acid, ATP, and NH4+. There are two major isoforms of GS in plants, a cytosolic form (GS1) and a chloroplastic form (GS2). In leaves, GS2 functions to assimilate ammonia produced by nitrate reduction and photorespiration, and GS1 is the major isoform(More)
  • 1