Kevin G. Yager

Learn More
Nanoparticles coated with DNA molecules can be programmed to self-assemble into three-dimensional superlattices. Such superlattices can be made from nanoparticles with different functionalities and could potentially exploit the synergetic properties of the nanoscale components. However, the approach has so far been used primarily with single-component(More)
The change in shape inducible in some photo-reversible molecules using light can effect powerful changes to a variety of properties of a host material. This class of reversible light-switchable molecules includes molecules that photo-dimerize, such as coumarins and anthracenes; those that allow intra-molecular photo-induced bond formation, such as fulgides,(More)
"Ball and socket" motif: The contorted dibenzotetrathienocoronene (6-DBTTC) forms a complex with the C(70) fullerene PC(70) BM embedded in an amorphous phase of PC(70) BM. The materials are processable into organic solar cells in solution. The power conversion efficiency is maximal when there is a 1:2 molar ratio of 6-DBTTC to PC(70) BM. Formation of the(More)
The morphology and orientation of thin films of the polymer poly-3(hexylthiophene)-important parameters influencing electronic and photovoltaic device performance-have been significantly altered through nanoimprinting with 100 nm spaced grooves. Grazing-incidence small-angle X-ray scattering studies demonstrate the excellent fidelity of the pattern(More)
Azobenzene, with two phenyl rings separated by an azo (–N=N–) bond, serves as the parent molecule for a broad class of aromatic azo compounds. These chromophores are versatile molecules, and have received much attention in research areas both fundamental and applied. The strong electronic absorption maximum can be tailored by ring substitution to fall(More)
Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic(More)
Azobenzene polymer thin films exhibit reversible surface mass transport when irradiated with a light intensity and/or polarization gradient, although the exact mechanism remains unknown. In order to address the role of thermal effects in the surface relief grating formation process peculiar to azo polymers, a cellular automaton simulation was developed to(More)
Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae.(More)
DNA-driven assembly of nanoscale objects has emerged as a powerful platform for the creation of materials by design via self-assembly. Recent years have seen much progress in the experimental realization of this approach for three-dimensional systems. In contrast, two-dimensional (2D) programmable nanoparticle (NP) systems are not well explored, in part due(More)